[1]王光燚,上官周平,方 燕.氮沉降对细根分解影响的研究进展[J].水土保持研究,2020,27(02):383-391.
 WANG Guangyi,SHANGGUAN Zhouping,FANG Yan.Advances in the Effect of Nitrogen Deposition on Fine Root Decomposition[J].Research of Soil and Water Conservation,2020,27(02):383-391.
点击复制

氮沉降对细根分解影响的研究进展

参考文献/References:

[1] 谢腾芳,薛立,王相娥.土壤—植物—大气连续体系中氮的研究进展[J].生态学杂志,2009,28(10):2107-2116.
[2] 卢广超,邵怡若,薛立.氮沉降对凋落物分解的影响研究进展[J].世界林业研究,2014,27(1):35-42.
[3] Galloway J N, Dentener F J, Capone D G, et al. Nitrogen cycles:Past, present, and future[J]. Biogeochemistry, 2004,70(2):153-226.
[4] 杨丽丽,龚吉蕊,刘敏,等.氮沉降对草地凋落物分解的影响研究进展[J].植物生态学报,2017,41(8):894-913.
[5] Dentener F, Drevet J, Lamarque J F, et al. Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation[J]. Global Biogeochemical Cycles, 2006,20(4):1-21.
[6] Andreas R, Burrows J P, Hendrik N, et al. Increase in tropospheric nitrogen dioxide over China observed from space[J]. Nature, 2005,437(7055):129-132.
[7] Högberg P. Nitrogen impacts on forest carbon[J]. Nature, 2007,447(7146):781-782.
[8] Clark C M, David T. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands[J]. Nature, 2008,451(7179):712-715.
[9] Liu X, Zhang Y, Han W, et al. Enhanced nitrogen deposition over China[J]. Nature, 2013,494(7438):459-462.
[10] Prescott C E. Litter decomposition:what controls it and how can we alter it to sequester more carbon in forest soils[J]. Biogeochemistry, 2010,101(1/3):133-149.
[11] Clemmensen K E, Bahr A, Ovaskainen O, et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest[J]. Science, 2013,339(6127):1615-1618.
[12] Bardgett R D, Mommer L, De Vries F T. Going underground: Root traits as drivers of ecosystem processes[J]. Trends in Ecology & Evolution, 2014,29(12):692-699.
[13] 张秀娟,吴楚,梅莉,等.水曲柳和落叶松人工林根系分解与养分释放[J].应用生态学报,2006,17(8):1370-1376.
[14] Lin C, Yang Y, Guo J, et al. Fine root decomposition of evergreen broadleaved and coniferous tree species in mid-subtropical China: dynamics of dry mass, nutrient and organic fractions[J]. Plant and Soil, 2011,338(1/2):311-327.
[15] Valverde-Barrantes O J, Raich J W, Russell A E. Fine-root mass, growth and nitrogen content for six tropical tree species[J]. Plant and Soil, 2009,290(1/2):357-370.
[16] Liang K, Chen W, Zhang X, et al. Differential responses of needle and branch order-based root decay to nitrogen addition:dominant effects of acid-unhydrolyzable residue and microbial enzymes[J]. Plant and Soil, 2015,394(1/2):315-327.
[17] 李媛媛,王正文,孙涛.氮添加对温带森林细根长期分解的影响[J].植物研究,2017,37(6):848-854.
[18] Vivanco L, Austin A. Intrinsic effects of species on leaf litter and root decomposition: a comparison of temperate grasses from north and south america[J]. Oecologia, 2006,150(1):97-107.
[19] Huangfu C H, Wei Z S. Nitrogen addition drives convergence of leaf litter decomposition rates between Flaveria bidentis and native plant[J]. Plant Ecology, 2018,219(11):1355-1368.
[20] 涂利华,陈刚,彭勇,等.华西雨屏区苦竹细根分解对模拟氮沉降的响应[J].应用生态学报,2014,25(8):2176-2182.
[21] Wang W, Zhang X, Tao N, et al. Effects of litter types, microsite and root diameters on litter decomposition in Pinus sylvestris plantations of northern China[J]. Plant and Soil, 2014,374(1/2):677-688.
[22] Song X, Quan L, Gu H. Effect of nitrogen deposition and management practices on fine root decomposition in Moso bamboo plantations[J]. Plant and Soil, 2017,410(1/2):207-215.
[23] Xia M X, Talhelm A F, Pregitzer K S. Long-term simulated atmospheric nitrogen deposition alters leaf and fine root decomposition[J]. Ecosystems, 2018,21(1):1-14.
[24] Zhou G X, Zhang J B, Qiu X W, et al. Decomposing litter and associated microbial activity responses to nitrogen deposition in two subtropical forests containing nitrogen-fixing or non-nitrogen-fixing tree species[J]. Scientific Reports, 2018,8(1):12934-12945.
[25] Epelde L, Lanzén A, Mijangos I, et al. Short-term effects of non-grazing on plants, soil biota and aboveground-belowground links in Atlantic mountain grasslands[J]. Scientific Reports, 2017,7(1):15097-15108.
[26] Pregitzer K S, Hendrick R L, Fogel R. The demography of fine roots in response to patches of water and nitrogen[J]. New Phytologist, 1993,125(3):575-580.
[27] Coleman M D, Friend A L, Kern C C. Carbon allocation and nitrogen acquisition in a developing Populus deltoides plantation[J]. Tree Physiology, 2005,24(12):1347-1357.
[28] Hendricks J J, Aber J D, Nadelhoffer K J, et al. Nitrogen controls on fine root substrate quality in temperate forest ecosystems[J]. Ecosystems, 2000,3(1):57-69.
[29] Pregitzer K S, Zak D R, Curtis P S, et al. Atmospheric CO2, soil nitrogen and turnover of fine roots[J]. New Phytologist, 1995,129(4):579-585.
[30] Burton A, Pregitzer K, Ruess R, et al. Root respiration in North American forests: Effects of nitrogen concentration and temperature across biomes[J]. Oecologia, 2002,131(4):559-568.
[31] Burton A J, Pregitzer K S, Hendrick R L. Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests[J]. Oecologia, 2000,125(3):389-399.
[32] Ostertag R. Effects of nitrogen and phosphorus availability on fine-root dynamics in Hawaiian montane forests [J]. Ecology, 2001,82(2):485-499.
[33] 杨玉盛,陈光水,林鹏,等.格氏栲天然林与人工林细根生物量、季节动态及净生产力[J].生态学报,2003,23(9):1719-1730.
[34] Zhang X, Wang W. The decomposition of fine and coarse roots: their global patterns and controlling factors[J]. Scientific Reports, 2015,5(1):9940-9950.
[35] Nadelhoffer K J, Johnson L, Laundre J, et al. Fine root production and nutrient content in wet and moist arctic tundras as influenced by chronic fertilization[J]. Plant and Soil, 2002,242(1):107-113.
[36] 熊德成,黄锦学,杨智杰,等.亚热带6种天然林树种细根养分异质性[J].生态学报,2012,32(14):4343-4351.
[37] 郭润泉,熊德成,宋涛涛,等.模拟氮沉降对杉木幼苗细根化学计量学特征的影响[J].生态学报,2018,38(17):6101-6110.
[38] Kraus T E C, Zasoski R J, Dahlgren R A. Fertility and pH effects on polyphenol and condensed tannin concentrations in foliage and roots[J]. Plant and Soil, 2004,262(1):95-109.
[39] Chen H, Harmon M E, Griffiths R P, et al. Effects of temperature and moisture on carbon respired from decomposing woody roots[J]. Forest Ecology and Management, 2000,138(1/3):51-64.
[40] 魏琳,程积民,井光花,等.黄土高原天然草地3种优势物种细根分解及养分释放对模拟氮沉降的响应[J].水土保持学报,2018,32(1):252-258.
[41] William P, Silver W L, Burke I C, et al. Global-scale similarities in nitrogen release patterns during long-term decomposition[J]. Science, 2007,315(5810):361-364.
[42] Raich J W, Russell A E, Valverde-Barrantes O. Fine root decay rates vary widely among lowland tropical tree species[J]. Oecologia, 2009,161(2):325-330.
[43] Birouste M, Kazakou E, Blanchard A, et al. Plant traits and decomposition: Are the relationships for roots comparable to those for leaves[J]. Annals of Botany, 2011,109(1):463-472.
[44] Roumet C, Birouste M, Picon-Cochard C, et al. Root structure-function relationships in 74 species:evidence of a root economics spectrum related to carbon economy[J]. New Phytologist, 2016,210(3):815-826.
[45] 王卫霞,史作民,罗达,等.南亚热带格木和红椎凋落叶及细根分解特征[J].生态学报,2016,36(12):3479-3487.
[46] Lai Z, Zhang Y, Liu J, et al. Fine-root distribution, production, decomposition, and effect on soil organic carbon of three revegetation shrub species in northwest China[J]. Forest Ecology & Management, 2016,359(14):381-388.
[47] Fan P, Guo D. Slow decomposition of lower order roots: a key mechanism of root carbon and nutrient retention in the soil[J]. Oecologia, 2010,163(2):509-515.
[48] Dijkstra F, Hobbie S M H, Knops J, et al. Nitrogen deposition and plant species interact to influence soil carbon stabilization[J]. Ecology Letters, 2004,7(1):1192-1198.
[49] Moorhead D, Sinsabaugh R. A theoretical model of litter decay and microbial interaction[J]. Ecological Monographs, 2006,76(2):151-174.
[50] 任立宁,刘世荣,蔡春菊,等.川南地区毛竹和林下植被芒箕细根分解特征[J].生态学报,2018,38(21):7638-7646.
[51] Yuan Z Y, Chen H Y H. Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes[J]. Nature Climate Change, 2015,5(5):465-469.
[52] 黄园园, Luise O,杨晓霞,等.养分添加对青藏高原高寒草甸丛枝菌根真菌的影响[J].北京大学学报:自然科学版,2014,50(5):911-918.
[53] 谢雨彤,简保磊,李贤伟,等.低效柏木林窗改造模式下香椿细根分解及其养分释放[J].应用与环境生物学报,2018,24(3):525-532.
[54] 赵超,王文娟,阮宏华,等.氮添加对杨树人工林表层土壤微生物群落结构的影响[J].东北林业大学学报,2015,43(6):83-88.
[55] 王晖,莫江明,鲁显楷,等.南亚热带森林土壤微生物量碳对氮沉降的响应[J].生态学报,2008,28(2):470-478.
[56] 程淑兰,方华军,徐梦,等.氮沉降增加情景下植物—土壤—微生物交互对自然生态系统土壤有机碳的调控研究进展[J].生态学报,2018,38(23):8285-8295.
[57] 多祎帆.亚热带3种森林类型土壤微生物生物量及其多样性研究[D].长沙:中南林业科技大学,2012.
[58] Fog K. The effect of added nitrogen on the rate of decomposition of organic matter[J]. Biological Reviews, 2008,63(3):433-462.
[59] Prescott C E. Does nitrogen availability control rates of litter decomposition in forests[J]. Plant and Soil, 1995,169(1):83-88.
[60] Xu W, Shi L, Chan O, et al. Assessing the effect of litter species on the dynamic of bacterial and fungal communities during leaf decomposition in microcosm by molecular techniques[J]. Plos One, 2013,8(12).DOI:10.1371/journal.pone.0084613.
[61] 王卫霞.南亚热带不同树种人工林生态系统碳氮特征研究[D].北京:中国林业科学研究院,2013.
[62] 蔡飞.杉木和木荷细根在江西大岗山天然常绿阔叶林中的分解动态研究[D].北京:北京林业大学,2014.
[63] 李艺坚,谢学方,孔令泽,等.林下蚯蚓养殖对胶园土壤速效养分、酶活性和橡胶树细根根密度的影响[J].热带农业科学,2019,39(2):61-65.
[64] 张秀娟,梅莉,王政权,等.细根分解研究及其存在的问题[J].植物学通报,2005,22(2):246-254.
[65] Van Diepen L T A, Lilleskov E A, Pregitzer K S, et al. Simulated nitrogen deposition causes a decline of intra and extraradical abundance of arbuscular mycorrhizal fungi and changes in microbial community structure in northern hardwood forests[J]. Ecosystems, 2010,13(5):683-695.
[66] 冀卫萍,王健健,赵学春,等.干旱区骆驼刺群落细根生产与周转[J].生态学杂志,2013,32(10):2635-2640.
[67] 赵学春,来利明,朱林海,等.三工河流域两种琵琶柴群落细根生物量、分解与周转[J].生态学报,2014,34(15):4295-4303.
[68] Xiao T L, De Liang K, Qing M P, et al. Nitrogen and water availability interact to affect leaf stoichiometry in a semi-arid grassland[J]. Oecologia, 2012,168(2):301-310.
[69] Suttle K B, Thomsen M A, Power M E. Species interactions reverse grassland responses to changing climate[J]. Science, 2007,315(5812):640-642.
[70] Cleland E E, Chiariello N R, Loarie S R, et al. Diverse responses of phenology to global changes in a grassland ecosystem[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(37):13740-13744.
[71] 罗永清,赵学勇,王涛,等.植物根系分解及其对生物和非生物因素的响应机理研究进展[J].草业学报,2017,26(2):197-207.
[72] Henry H A L, Cleland E E, Field C B, et al. Interactive effects of elevated CO2, N deposition and climate change on plant litter quality in a California annual grassland[J]. Oecologia, 2005,142(3):465-473.
[73] Li Y L, Yang F F, Ou Y X, et al. Changes in forest soil properties in different successional stages in lower tropical China[J]. Plos One, 2013,8(11).DOI:10.1371/journal.pone.0081359.
[74] García-Palacios P, Prieto I, Ourcival J M, et al. Disentangling the litter quality and soil microbial contribution to leaf and fine root litter decomposition responses to reduced rainfall[J]. Ecosystems, 2016,19(3):490-503.
[75] 王瑞丽.三峡库区马尾松人工林细根生长动态研究[D].北京:中国林业科学研究院,2012.
[76] Xu X, Lian Y, Duan C, et al. Effect of N addition, moisture, and temperature on soil microbial respiration and microbial biomass in forest soil at different stages of litter decomposition[J]. Journal of Soils and Sediments, 2016,16(5):1421-1439.
[77] 蔡瑛莹,熊德成,李茵茵,等.土壤增温和氮沉降对杉木幼树细根生物量的影响[J].亚热带资源与环境学报,2018,13(1):36-44.
[78] Robert L S. Phenol oxidase, peroxidase and organic matter dynamics of soil[J]. Soil Biology & Biochemistry, 2010,42(3):391-404.
[79] 李吉玫,张毓涛,李建贵,等.模拟氮沉降对天山云杉细根分解及其养分释放的影响[J].西北植物学报,2015,35(1):182-188.
[80] 谷利茶,王国梁,景航,等.氮添加对油松不同径级细根分解及其养分释放的影响[J].应用生态学报,2017,28(9):2771-2777.
[81] 武志超,吴福忠,杨万勤,等.高山森林3种细根分解初期微生物生物量动态[J].生态学报,2012,32(13):4094-4102.
[82] 胡晓辉,李娟,郭世荣,等.钙对根际低氧胁迫下黄瓜幼苗根系呼吸代谢的影响[J].园艺学报,2006,33(5):1113-1116.
[83] Yang Y S, Chen G S, Guo J F, et al. Decomposition dynamic of fine roots in a mixed forest of Cunninghamia lanceolata and Tsoongiodendron odorum in mid-subtropics[J]. Annals of Forest Science, 2004,61(1):65-72.
[84] Frey S D, Knorr M, Parrent J L, et al. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests[J]. Forest Ecology & Management, 2004,196(1):159-171.
[85] Luo L, Meng H, Wu R N, et al. Impact of nitrogen pollution deposition on extracellular enzyme activity, microbial abundance and carbon storage in coastal mangrove sediment[J]. Chemosphere, 2017,177(1):275-283.
[86] Deforest J L, Scott L G. Available organic soil phosphorus has an important influence on microbial community composition[J]. Soil Science Society of America Journal, 2010,74(6):2059-2066.
[87] 常雅军.秦岭西部针叶林凋落叶分解及其对模拟氮沉降的响应[D].兰州:兰州大学,2009.
[88] Shao Y H, Liu T, Eisenhauer N, et al. Plants mitigate detrimental nitrogen deposition effects on soil biodiversity[J]. Soil Biology and Biochemistry, 2018,127(1):178-186.
[89] Whalen E, Smith R, Grandy S, et al. Manganese limitation as a mechanism for reduced decomposition in soils under atmospheric nitrogen deposition[J]. Soil Biology and Biochemistry, 2018,127(1):252-263.
[90] Tietema A. Microbial carbon and nitrogen dynamics in coniferous forest floor material collected along a European nitrogen deposition gradient[J]. Forest Ecology and Management, 1998,101(1/3):29-36.
[91] Hansen K, Vesterdal L, Schmidt I K, et al. Litterfall and nutrient return in five tree species in a common garden experiment[J]. Forest Ecology & Management, 2009,257(10):2133-2144.
[92] 邓小文,韩士杰.氮沉降对森林生态系统土壤碳库的影响[J].生态学杂志,2007,26(10):1622-1627.
[93] Xu G L, Mo J M, Zhou G Y, et al. Preliminary response of soil fauna to simulated N deposition in three typical subtropical forests[J]. Pedosphere, 2006,16(5):596-601.
[94] Elser J J, Bracken M E S, Cleland E E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecology Letters, 2007,10(12):1135-1142.
[95] Hobbie S E, Vitousek P M. Nutrient limitation of decomposition in Hawaiian forests[J]. Ecology, 2000,81(7):1867-1877.
[96] 郑俊强,郭瑞红,李东升,等.氮沉降和干旱对阔叶红松林凋落物分解的影响[J].北京林业大学学报,2016,38(4):21-28.
[97] Silver W L, Miya R K. Global patterns in root decomposition:comparisons of climate and litter quality effects[J]. Oecologia, 2001,129(3):407-419.
[98] Sun T, Dong L, Mao Z. Simulated atmospheric nitrogen deposition alters decomposition of ephemeral roots[J]. Ecosystems, 2015,18(7):1240-1252.
[99] Rousk J, Bååth E, Brookes P C, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil[J]. the Isme Journal, 2010,4(10):1340-1351.
[100] 王巧红,宫渊波,张君.森林生态系统对大气氮沉降的响应[J].四川林业科技,2006,27(1):19-24.

相似文献/References:

[1]艾泽民,梁楚涛,辛奇,等.模拟氮沉降对油松土壤热水浸提有机物的影响[J].水土保持研究,2018,25(04):65.
 AI Zemin,LIANG Chutao,XIN Qi,et al.Effects of Simulated Nitrogen Deposition on Hot-Water Extractable Organic Matter in Rhizosphere and Non-Rhizosphere of Pinus tabulaeformis[J].Research of Soil and Water Conservation,2018,25(02):65.
[2]何俐蓉,梁楚涛,辛奇,等.模拟氮沉降对油松幼苗土壤可溶性氮含量及有机物官能团特征的影响[J].水土保持研究,2018,25(05):36.
 HE Lirong,LIANG Chutao,XIN Qi,et al.Effects of Simulated Nitrogen Deposition on Soil Soluble Nitrogen Content and Organic Functional Group Characteristics of Pinus tabulaeformis[J].Research of Soil and Water Conservation,2018,25(02):36.
[3]康海军,李春光.武夷山亚热带常绿阔叶林土壤养分及酶活性对氮沉降的响应[J].水土保持研究,2019,26(02):93.
 KANG Haijun,LI Chunguang.Responses of Soil Nutrients and Enzyme Activities to Nitrogen Deposition in Subtropical Evergreen Broad-leaved Forest in Wuyishan Mountain[J].Research of Soil and Water Conservation,2019,26(02):93.
[4]王英男,彭晓媛,华晓雨,等.氮素与盐碱胁迫互作对羊草-丛枝菌根共生体根系离子与有机酸含量的影响[J].水土保持研究,2019,26(02):118.
 WANG Yingnan,PENG Xiaoyuan,HUA Xiaoyu,et al.Effects of Nitrogen Deposition on the Ion Balance and Organic Acids of the Leymus chinensis-AM Symbiont Roots Under Saline-Alkali Stress[J].Research of Soil and Water Conservation,2019,26(02):118.
[5]翟珈莹,何俐蓉,吴 阳,等.模拟氮沉降对油松土壤水溶性碳氮及其光谱特征的影响[J].水土保持研究,2020,27(02):136.
 ZHAI Jiaying,HE Lirong,WU Yang,et al.Effects of Simulated Nitrogen Deposition on Soil Water-Soluble Carbon and Nitrogen Fractions and Their Spectral Characteristics in the Land of Pinus tabuliformis[J].Research of Soil and Water Conservation,2020,27(02):136.

备注/Memo

收稿日期:2019-04-17 修回日期:2019-04-30 资助项目:国家自然科学基金(41807516); 中国博士后面上项目(2018M631199); 陕西省博士后科研项目(2018BSHEDZZ142); 西北农林科技大学基本科研业务专项基金(2452016109) 第一作者:王光燚(1996—),女,贵州剑河人,硕士研究生,研究方向为农业生态。E-mail:18392452782@163.com 通信作者:上官周平(1964—),男,陕西扶风人,研究员,博士生导师,主要从事旱地农业、植物生态研究。E-mail:shangguan@ms.iswc.ac.cn 方燕(1983—),女,陕西西安人,助理研究员,主要从事生态学研究。E-mail:fangyan@nwafu.edu.cn

更新日期/Last Update: 2020-02-25