[1]何俐蓉,梁楚涛,辛奇,等.模拟氮沉降对油松幼苗土壤可溶性氮含量及有机物官能团特征的影响[J].水土保持研究,2018,25(05):36-40.
 HE Lirong,LIANG Chutao,XIN Qi,et al.Effects of Simulated Nitrogen Deposition on Soil Soluble Nitrogen Content and Organic Functional Group Characteristics of Pinus tabulaeformis[J].,2018,25(05):36-40.
点击复制

模拟氮沉降对油松幼苗土壤可溶性氮含量及有机物官能团特征的影响()
分享到:

《水土保持研究》[ISSN:1005-3409/CN:61-1272/P]

卷:
25卷
期数:
2018年05期
页码:
36-40
栏目:
出版日期:
2018-09-06

文章信息/Info

Title:
Effects of Simulated Nitrogen Deposition on Soil Soluble Nitrogen Content and Organic Functional Group Characteristics of Pinus tabulaeformis
作者:
何俐蓉1 梁楚涛2 辛奇1 薛萐12
1. 西北农林科技大学 资源环境学院, 陕西 杨凌 712100;
2. 中国科学院 水利部 水土保持研究所, 黄土高原土壤侵蚀与旱地农业国家重点实验室, 陕西 杨凌 712100
Author(s):
HE Lirong1 LIANG Chutao2 XIN Qi1 XUE Sha12
1. College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China;
2. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences, Yangling, Shaanxi 712100, China
关键词:
氮沉降热水浸提有机物氮组分官能团特征根际
Keywords:
nitrogen depositionwater soluble organic matternitrogen componentfunctional group characteristicrhizosphere
分类号:
S714.2
摘要:
为研究氮沉降对黄土丘陵区林地土壤可溶性氮及可溶性有机物官能团特征的影响,设置6个不同施氮水平0,2.8,5.6,11.2,22.4,44.8 gN/(m2·a)的盆栽油松,连续培养五年,对油松根际、非根际可溶性氮及其组分进行了研究。结果表明:氮添加会显著增加土壤可溶性总氮、可溶性无机氮和可溶性有机氮含量、可溶性有机氮占可溶性氮的比重随氮沉降的增加而成倍增加,可溶性氮及其组分均未表现出明显的根际效应。与此同时,通过不同紫外特征的研究,发现较低和较高水平氮沉降均能增加根际土水溶性有机物中芳香族化合物的积累,非根际土则无明显差异,说明氮沉降与植物的共同作用改变了土壤水溶性有机物结构。
Abstract:
To study the effects of nitrogen deposition on the functional characteristics of soil soluble nitrogen and soluble organic matter on the Loess Plateau, 6 nitrogen levels 0, 2.8, 5.6, 11.2, 22.4 and 44.8 gN/(m2·a) potted pine were set, continuous cultivation lasted for five years. Nitrogen addition significantly increased soil water soluble total nitrogen, water soluble inorganic nitrogen and water soluble organic nitrogen content, the proportion of soluble organic nitrogen to soluble nitrogen increased exponentially with the increase of nitrogen deposition. The soluble nitrogen and its components showed no obvious rhizosphere effects. At the same time, it was found that the lower and higher levels of nitrogen deposition increased the accumulation of aromatic compounds of soil water soluble organic matter in the rhizosphere, but could not make the difference in non rhizosphere soil. Nitrogen deposition can increase the content of nitrogen in soil which can be dissolved in water. The effect of plant root system on this trend is not significant. Pinus tabulaeformis can hardly change the effect of nitrogen deposition on the content of active nitrogen in soil. The combined effects of nitrogen deposition and Pinus tabulaeformis can increase the aromatic functional groups of the water soluble organic compounds in the rhizosphere.

参考文献/References:

[1] Elser J J, Bracken M E S, Cleland E E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecology Letters, 2007,10(12):1135-1142.
[2] Fang Y, Yoh M, Koba K, et al. Nitrogen deposition and forest nitrogen cycling along an urban-rural transect in southern China[J]. Global Change Biology, 2011,17(2):872-885.
[3] Galloway J N, Cowling E B. Reactive nitrogen and the world:200 years of change[J]. Ambio:A Journal of the Human Environment, 2002,31(2):64-71.
[4] Kalbitz K, Solinger S, Park J H, et al. Controls on the dynamics of dissolved organic matter in soils:a review[J]. Soil Science, 2000,165(4):277-304.
[5] Stevens C J, Dise N B, Mountford J O, et al. Impact of nitrogen deposition on the species richness of grasslands[J]. Science, 2004,303(5665):1876-1879.
[6] 莫江明,郁梦德,孔国辉.鼎湖山马尾松人工林土壤硝态氮和铵态氨动态研究[J].植物生态学报,1997,21(4):335-341.
[7] 方运霆,莫江明,周国逸,等.南亚热带森林土壤有效氮含量及其对模拟氮沉降增加的初期响应[J].生态学报,2004,24(11):2353-2359.
[8] Blumfield T J, Xu Z H, Prasolova N V, et al. Effect of overlying windrowed harvest residues on soil carbon and nitrogen in hoop pine plantations of subtropical Australia[J]. J. Soils Sediments, 2006,6(4):243-248.
[9] Jensen L S, Mueller T, Magid J, et al. Temporal variation of C and N mineralization, microbial biomass and extractable organic pools in soil after oilseed rape straw incorporation in the field[J]. Soil Biology and Biochemistry, 1997,29(7):1043-1055.
[10] Qualls R G, Haines B L, Swank W T. Fluxes of Dissolved Organic Nutrients and Humic Substances in a Deciduous Forest[J]. Ecology, 1991,72(1):254-266.
[11] Artinger R, Buckau G, Geyer S, et al. Characterization of groundwater humic substances:influence of sedimentary organic carbon[J]. Applied Geochemistry, 2000,15(1):97-116.
[12] 常单娜,曹卫东,包兴国,等.西北灌漠土长期不同施肥改变土壤可溶性有机质的化学及光谱学特性[J].光谱学与光谱分析,2016,36(1):220-225.
[13] Wang J K, Li C, Yu S, et al. The biodegradation of dissolved organic carbon and nitrogen in brown earth with different fertility levels[J]. Acta Ecologica Sinica, 2008,28(12):6165-6171.
[14] 陈云明,梁一民,程积民.黄土高原林草植被建设的地带性特征[J].植物生态学报,2002,26(3):339-345.
[15] Zhao B Q, Li X Y, Li X P, et al. Long-term fertilizer experiment network in China:crop yields and soil nutrient trends[J]. Agronomy Journal, 2010,102(1):216-230.
[16] 鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000.
[17] Wang J K, Li C, Yu S, et al. The biodegradation of dissolved organic carbon and nitrogen in brown earth with different fertility levels[J]. Acta Ecologica Sinica, 2008,28(12):6165-6171.
[18] Gundersen P, Emmett B A, Kjønaas O J, et al. Impact of nitrogen deposition on nitrogen cycling in forests:a synthesis of NITREX data[J]. Forest Ecology and Management, 1998,101(1):37-55.
[19] Prescott C E, Corbin J P, Parkinson D. Immobilization and availability of N and P in the forest floors of fertilized Rocky Mountain coniferous forests[J]. Plant and Soil, 1992,143(1):1-10.
[20] 陈立新,段文标.模拟氮沉降对温带典型森林土壤有效氮形态和含量的影响[J].应用生态学报,2011,22(8):2005-2012.
[21] Wang J K, Li C, Yu S, et al. The biodegradation of dissolved organic carbon and nitrogen in brown earth with different fertility levels[J]. Acta Ecologica Sinica, 2008,28(12):6165-6171.
[22] 张春华,王宗明,居为民,等.松嫩平原玉米带土壤碳氮比的时空变异特征[J].环境科学,2011,32(5):1407-1414.
[23] 吕超群,田汉勤,黄耀.陆地生态系统氮沉降增加的生态效应[J].植物生态学报,2007,31(2):205-218.
[24] Peuravuori J, Pihlaja K. Molecular size distribution and spectroscopic properties of aquatic humic substances[J]. Analytica Chimica Acta, 1997,337(2):133-149.
[25] Traina S J, Novak J, Smeck N E. An ultraviolet absorbance method of estimating the percent aromatic carbon content of humic acids[J]. Journal of Environmental Quality, 1990,19(1):151-153.
[26] Kalbitz K, Schmerwitz J, Schwesig D, et al. Biodegradation of soil-derived dissolved organic matter as related to its properties[J]. Geoderma, 2003,113(3/4):273-291.
[27] 何冬梅.不同土地利用方式土壤有机碳结构及矿化特征[D].南京:南京林业大学,2014.
[28] 李欠欠,汤利.大气氮沉降的研究进展[J].云南农业大学学报:自然科学版,2010,25(6):889-894.
[29] 刘翥,杨玉盛,司友涛,等.植被恢复对侵蚀红壤可溶性有机质含量及光谱学特征的影响[J].植物生态学报,2014,38(11):1174-1183.
[30] 闫聪微,马红亮,高人,等.模拟氮沉降对中亚热带森林土壤中可溶性氮含量的影响[J].环境科学研究,2012,25(6):678-684.

相似文献/References:

[1]艾泽民,梁楚涛,辛奇,等.模拟氮沉降对油松土壤热水浸提有机物的影响[J].水土保持研究,2018,25(04):65.
 AI Zemin,LIANG Chutao,XIN Qi,et al.Effects of Simulated Nitrogen Deposition on Hot-Water Extractable Organic Matter in Rhizosphere and Non-Rhizosphere of Pinus tabulaeformis[J].,2018,25(05):65.

备注/Memo

备注/Memo:
收稿日期:2017-11-20;改回日期:2018-03-19。
基金项目:十三五国家重点研发计划(2016YFC0501707);国家自然科学基金资助项目(41671513);中科院西部青年学者项目(XAB2015A05)
作者简介:何俐蓉(1991-),女,陕西榆林人,在读硕士,主要研究方向为流域生态学。156144982@qq.com
通讯作者:薛萐(1978-),男,陕西西安人,研究员,主要从事土壤微生物和生态修复研究。E-mail:xuesha100@163.com
更新日期/Last Update: 1900-01-01