[1]艾泽民,梁楚涛,辛奇,等.模拟氮沉降对油松土壤热水浸提有机物的影响[J].水土保持研究,2018,25(04):65-70.
 AI Zemin,LIANG Chutao,XIN Qi,et al.Effects of Simulated Nitrogen Deposition on Hot-Water Extractable Organic Matter in Rhizosphere and Non-Rhizosphere of Pinus tabulaeformis[J].,2018,25(04):65-70.
点击复制

模拟氮沉降对油松土壤热水浸提有机物的影响()
分享到:

《水土保持研究》[ISSN:1005-3409/CN:61-1272/P]

卷:
25卷
期数:
2018年04期
页码:
65-70
栏目:
出版日期:
2018-06-13

文章信息/Info

Title:
Effects of Simulated Nitrogen Deposition on Hot-Water Extractable Organic Matter in Rhizosphere and Non-Rhizosphere of Pinus tabulaeformis
作者:
艾泽民12 梁楚涛12 辛奇3 薛萐12 刘国彬13
1. 中国科学院 水利部 水土保持研究所, 黄土高原土壤侵蚀与旱地农业国家重点实验室, 陕西 杨凌 712100;
2. 中国科学院大学, 北京 100049;
3. 西北农林科技大学 水土保持研究所, 陕西 杨凌 712100
Author(s):
AI Zemin12 LIANG Chutao12 XIN Qi3 XUE Sha12 LIU Guobin13
1. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS & MWR, Yangling, Shaanxi 712100, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi 712100, China
关键词:
氮沉降热水浸提有机物氮组分官能团特征根际
Keywords:
nitrogen depositionhot-water extractable organic matternitrogen componentfunctional group characteristicrhizosphere
分类号:
S714.2
摘要:
为了研究黄土高原林区氮沉降对油松土壤热水浸提有机物的影响及其根际效应,选择了6个施氮梯度[0,2.8,5.6,11.2,22.4,44.8 g/(m2·a)],采用油松盆栽模拟试验,连续培养了6年。对油松根际、非根际热水浸提有机物进行了研究,结果表明:不高于5.6 g/(m2·a)的模拟氮沉降量可以显著增加根际热水浸提有机碳含量,5.6 g/(m2·a)及以上的氮沉降对热水浸提有机碳的影响未达到显著水平。热水浸提总氮、热水浸提硝态氮、热水浸提有机氮、热水浸提有机氮占热水浸提总氮和土壤全氮比例均随氮沉降量的增加而升高,且根际与非根际差异明显。紫外特征值的结果表明,氮沉降会增加芳香族化合物及羧基含量,一定水平的氮沉降会增加热水浸提有机物的易降解组分的分解。较低的氮沉降增加了根际热水浸提有机物,非根际则有差别。热水浸提有机物官能团特征发生改变且变化并不一致。SUVA254,E280和ASI可作为指征代谢类型对氮沉降响应的潜在指标。
Abstract:
Nitrogen deposition has an important influence on hot-water extractable organic matter in rhizosphere and non-rhizosphere of Pinus tabulaeformis in the Loess Plateau. Pot experiments of Pinus tabulaeformis were continuously cultured for six years, with adding six nitrogen gradients [0, 2.8, 5.6, 11.2, 22.4 and 44.8 g/(m2·a)]. With respect to hot-water extractable organic matter (hot-water extractable organic carbon, HWOC; hot-water extractable organic nitrogen, HWON) in rhizosphere and non-rhizosphere of Pinus tabulaeformis, nitrogen deposition content with less than 5.6 g/(m2·a) markedly increased HWOC. Nitrogen deposition content with more than or equal to 5.6 g/(m2·a) did not significantly affect HWOC. HWTN (hot-water extractable total nitrogen), HWON, HWON/HWTN, HWTN/TN (total nitrogen) and HWON/TN increased with increase of nitrogen deposition content. There were remarkable differences between rhizosphere and non-rhizosphere situations. Nitrogen deposition increased aromatic compounds and carboxyl content by UV characteristic values. A certain level of nitrogen deposition would decompose easy-decomposable components of hot-water extractable organic matter. Under a certain range of low nitrogen deposition, hot water extractable organic matter in rhizosphere increased, which is different from that in non-rhizosphere. Functional group contents of hot water extract organic matter could be changed, but the changes were not consistent. Two indicators may permit to indicate metabolic type response differences for nitrogen deposition. One is SUVA254 and E280 (associated with ammonia nitrogen, another is ASI (associated with nitrate nitrogen).

参考文献/References:

[1] Bai Y, Wu Jianguo, Clark C M, et al. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning:evidence from inner Mongolia Grasslands[J]. Global Change Biology, 2009,16(1):358-372.
[2] Galloway J N, Cowling E B. Reactive nitrogen and the world:200 years of change[J]. Ambio,2002,31(31):64-71.
[3] 段雷,马萧萧,余德祥,等.模拟氮沉降对森林土壤有机物淋溶的影响[J].环境科学,2013,34(6):2422-2427.
[4] Gundersen P, Emmett B A, Kjønaas O J, et al. Impact of nitrogen deposition on nitrogen cycling in forests:a synthesis of NITREX data[J]. Forest Ecology and Management, 1998,101(1):37-55.
[5] Aber J D, Nadelhoffer K J, Steudler P, et al. Nitrogen saturation in northern forest ecosystems[J]. Bioscience,1989,39(6):378-286.
[6] Bahr A, Ellström M, Akselsson C, et al. Growth of ectomycorrhizal fungal mycelium along a Norway spruce forest nitrogen deposition gradient and its effect on nitrogen leakage[J]. Soil Biology and Biochemistry, 2013,59(2):38-48.
[7] Vestgarden L S, Abrahamsen G, Stuanes A O. Soil solution response to nitrogen and magnesium application in a Scots pine forest[J]. Soil Science Society of America Journal, 2001,65(6):1812-1823.
[8] Sparling G, Vojvodicvukovic M, Schipper L A. Hot-water-soluble C as a simple measure of labile soil organic matter:the relationship with microbial biomass C[J]. Soil Biology & Biochemistry, 1998, 30(10/11):1469-1472.
[9] Xue S, Li P, Liu G B, et al. Changes in soil hot-water extractable C, N and P fractions during vegetative restoration in Zhifanggou watershed on the Loess Plateau[J]. Journal of Integrative Agriculture, 2013,12(12):2250-2259.
[10] Ghani A, Dexter M, Perrott K W. Hot-water extractable carbon in soils:a sensitive measurement for determining impacts of fertilisation, grazing and cultivation[J]. Soil Biology & Biochemistry, 2003,35(9):1231-1243.
[11] Marschner B, Kalbitz K. Controls of bioavailability and biodegradability of dissolved organic matter in soils[J]. Geoderma, 2003,113(3):211-235.
[12] Bu X, Wang L, Ma W, et al. Spectroscopic characterization of hot-water extractable organic matter from soils under four different vegetation types along an elevation gradient in the Wuyi Mountains[J]. Geoderma, 2010,159(1):139-146.
[13] 陈云明,梁一民,程积民.黄土高原林草植被建设的地带性特征[J].植物生态学报,2002,26(3):339-345.
[14] 申家朋,张文辉,李彦华,等.陇东黄土高原沟壑区刺槐和油松人工林的生物量和碳密度及其分配规律[J].林业科学,2015,51(4):1-7.
[15] 文海燕,傅华,牛得草,等.大气氮沉降对黄土高原土壤氮特征的影响[J].草业科学,2013,30(5):694-698.
[16] 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
[17] Korshin G, Chow C W K, Fabris R, et al. Absorbance spectroscopy-based examination of effects of coagulation on the reactivity of fractions of natural organic matter with varying apparent molecular weights[J]. Water Research, 2009,43(6):1541-1548.
[18] Kalbitz K, Schmerwitz J, Schwesig D, et al. Biodegradation of soil-derived dissolved organic matter as related to its properties[J]. Geoderma, 2003,113(3):273-291.
[19] Kalbitz K, Schwesig D, Schmerwitz J, et al. Changes in properties of soil-derived dissolved organic matter induced by biodegradation[J]. Soil Biology and Biochemistry, 2003,35(8):1129-1142.
[20] Akagi J, Zsolnayá, Bastida F. Quantity and spectroscopic properties of soil dissolved organic matter (DOM) as a function of soil sample treatments:Air-drying and pre-incubation[J]. Chemosphere, 2007,69(7):1040-1046.
[21] Traversa A, D’Orazio V, Senesi N. Properties of dissolved organic matter in forest soils:influence of different plant covering[J]. Forest Ecology and Management, 2008,256(12):2018-2028.
[22] Pregitzer K S, Burton A J, Zak D R, et al. Simulated chronic nitrogen deposition increases carbon storage in Northern Temperate forests[J]. Global Change Biology, 2008,14(1):142-153.
[23] Berg B, Matzner E. Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems[J]. Environmental Reviews, 1997,5(1):1-25.
[24] 沈芳芳,袁颖红,樊后保,等.氮沉降对杉木人工林土壤有机碳矿化和土壤酶活性的影响[J].生态学报,2012,32(2):517-527.
[25] Fujita Y, Wassen M J. Increased N affects P uptake of eight grassland species:the role of root surface phosphatase activity[J]. Oikos,2010,119(10):1665-1673.
[26] 庞丽,张一,周志春,等.模拟氮沉降对低磷胁迫下马尾松不同家系根系分泌和磷效率的影响[J].植物生态学报,2014,38(1):27-35.
[27] 闫聪微,马红亮,高人,等.模拟氮沉降对中亚热带森林土壤中可溶性氮含量的影响[J].环境科学研究,2012,25(6):678-384.
[28] 薛萐,刘国彬,张超.黄土丘陵区不同植被对根际土壤微生物特性的影响[J].草地学报,2011,19(4):577-583.
[29] 彭琴,董云社,齐玉春.氮输入对陆地生态系统碳循环关键过程的影响[J].地球科学进展,2008,23(8):874-883.
[30] 郁培义,朱凡,王志勇,等.氮添加对樟树林红壤微生物群落代谢功能的影响[J].中南林业科技大学学报,2013,33(3):70-74.
[31] 李辉,徐新阳,李培军,等.人工湿地中氨化细菌去除有机氮的效果[J].环境工程学报,2008,2(8):1044-1047.
[32] 蔡元锋,吴宇澄,王书伟,等.典型淹水稻田土壤微生物群落的基因转录活性及其主要生理代谢过程[J].微生物学报,2014,54(9):1033-1044.

相似文献/References:

[1]何俐蓉,梁楚涛,辛奇,等.模拟氮沉降对油松幼苗土壤可溶性氮含量及有机物官能团特征的影响[J].水土保持研究,2018,25(05):36.
 HE Lirong,LIANG Chutao,XIN Qi,et al.Effects of Simulated Nitrogen Deposition on Soil Soluble Nitrogen Content and Organic Functional Group Characteristics of Pinus tabulaeformis[J].,2018,25(04):36.

备注/Memo

备注/Memo:
收稿日期:2017-05-26;改回日期:2017-09-10。
基金项目:十三五国家重点研发计划(2016YFC0501707);国家科技支撑计划(2015BAC01B03);中科院西部青年学者项目(XAB2015A05)
作者简介:艾泽民(1987-),男,河南信阳人,在读博士,研究方向为流域生态学。E-mail:aizmxs@yeah.net
通讯作者:刘国彬(1958-),男,陕西榆林人,研究员,主要从事生态恢复学研究。E-mail:gbliu@ms.iswc.ac.cn
更新日期/Last Update: 1900-01-01