PDF DownloadHTML ]" id="html" rel="external">HTML
[1]ZHANG Hanbo,XU Yong,DOU Shiqing,et al.TRMM Downscaling Data of Yangtze Based on GWR Model[J].Research of Soil and Water Conservation,2021,28(03):149-155.
Copy

TRMM Downscaling Data of Yangtze Based on GWR Model

References:
[1] 郑吉莉.基于TRMM数据的和田河流域降水变化特征与径流的关系[D].山东日照:曲阜师范大学,2019.
[2] Jin Yufang. Ecological consequences of variation in precipitation: separating shortDversus long-term effects using satellite data[J]. Global Ecology and Biogeography, 2014,23(3):358-370.
[3] 黄玉莹.北部湾经济区TRMM降水数据空间降尺度研究[J].广西师范大学学报:自然科学版,2019,037(4):163-169.
[4] Stisen S. Interpolation of daily raingauge data for hydrological modelling in data sparse regions using pattern information from satellite data[J]. International Association of Scientific Hydrology Bulletin, 2015,60(11):1911-1926.
[5] 吕洋,董国涛,杨胜天,等.雅鲁藏布江流域NDVI时空变化及其与降水和高程的关系[J].资源科学,2014,36(3):603-611.
[6] 曾业隆,谭伟,王超,等.基于GWR模型的贵州喀斯特山区TRMM 3 B43降水资料降尺度分析[J].干旱气象,2018,36(3):405-414.
[7] Sandra E. Yuter, Casey D. Burleyson, Adam H. Sobel, et al. Very high resolution rainfall patterns measured by TRMM precipitation radar:seasonal and diurnal cycles[J]. Climate Dynamics:Observational, Theoretical and Computational Research on the Climate System, 2012,39(1/2):239-258.
[8] Deblauwe V, Droissart V, Bose R, et al. Remotely sensed temperature and precipitation data improve species distribution modelling in the tropics[J]. Global Ecology and Biogeography, 2016,25(4):443-454.
[9] 李琼,杨梅学,万国宁,等. TRMM3B43降水数据在黄河源区的适用性评价[J].冰川冻土,2016,38(3):620-633. DOI:10,7522/j. issn, 1000-0240,2016.0069.
[10] 谷黄河,余钟波,杨传国,等.卫星雷达测雨在长江流域的精度分析[J].水电能源科学,2010,28(8):3-6.
[11] Kizza M, Westerberg I, Rodhe A, et al. Estimating areal rainfall over Lake Victoria and its basin using ground-based and satellite data[J]. Journal of Hydrology, 2012,464/465:401-411.
[12] 金辉明,徐鹏,何康,等.基于地理加权回归模型的省级TRMM降水数据降尺度研究[J].浙江水利水电学院学报,2017,29(3):29-36,83.
[13] 刘小婵,张洪岩,赵建军, 等.东北地区TRMM数据降尺度的GWR模型分析[J].地球信息科学学报,2015,17(9):1055-1062. DOI:10.3724/SP.J.1047.2015.01055.
[14] Xu S, Wu C, Wang L, et al. A new satellite-based monthly precipitation downscaling algorithm with non-stationary relationship between precipitation and land surface characteristics[J]. Remote Sensing of Environment, 2015,162:119-140.
[15] Chen Cheng. An Improved spatial downscaling procedure for TRMM3B43 precipitation product using geographically weighted regression[J]. IEEE Journal of Selected Topics in Applied Earth Observations & amp; Remote Sensing, 2015,8(9):4592-4604.
[16] 姬世保,杜军凯,仇亚琴,等.基于星地融合数据的黔桂喀斯特山地降水时空分布[J].南水北调与水利科技,2019,17(6):28-36.
[17] 李琼.基于地形因子的TRMM 3843降水数据在黄河源区的融合校正研究[J].应用基础与工程科学学报,2018,26(6):6-22.
[18] Fung Wing, Wong James. Spatial and temporal analysis of MODIS EVI and TRMM 3B43 rainfall retrievals in Australia[C]. Ieee. the 19 th International Conference on Geoinformatics, 2011:1-6.
[19] 熊俊楠,李伟,刘志奇,等.基于GWR模型的青藏高原地区TRMM数据降尺度研究[J].国土资源遥感,2019,31(4):88-95.
[20] Zhang D, Hong H, Zhang Q, et al. Attribution of the changes in annual streamflow in the Yangtze River Basin over the past 146 years[J]. Theoretical & Applied Climatology, 2015,187(1):323-332.
[21] 王成新.循环经济,长江流域可持续发展的必由之路[J].长江流域资源与环境,2003,12(6):503-508.
[22] Brunsdon C, Fotheringham S, Charlton M. Geographically weighted local statistics applied to binary data[J]. Lecture Notes in Computer Science, 2002,2478:38-50.
[23] Brunsdon C, Fotheringham A S, Charlton M E. Geographically weighted regression: a method for exploring spatial nonstationarity[J]. Geographical Analysis, 2010,28(4):281-298.
[24] 范雪薇,刘海隆.天山山区TRMM降水数据的空间降尺度研究[J].自然资源学报,2018,33(3):478-488.
[25] McMillen D P. Geographically weighted regression: the analysis of spatially varying relationships[J]. American Journal of Agricultural Economics, 2004, 86(2):554-556.
Similar References:

Memo

-

Last Update: 2021-04-20

Online:3656       Total Traffic Statistics:27352836

Website Copyright: Research of Soil and Water Conservation Shaanxi ICP No.11014090-10
Tel: 029-87012705 Address: Editorial Department of Research of Soil and Water Conservation, No. 26, Xinong Road, Yangling, Shaanxi Postcode: 712100