PDF DownloadHTML ]" id="html" rel="external">HTML
[1]WANG Guangyi,SHANGGUAN Zhouping,FANG Yan.Advances in the Effect of Nitrogen Deposition on Fine Root Decomposition[J].Research of Soil and Water Conservation,2020,27(02):383-391.
Copy

Advances in the Effect of Nitrogen Deposition on Fine Root Decomposition

References:
[1] 谢腾芳,薛立,王相娥.土壤—植物—大气连续体系中氮的研究进展[J].生态学杂志,2009,28(10):2107-2116.
[2] 卢广超,邵怡若,薛立.氮沉降对凋落物分解的影响研究进展[J].世界林业研究,2014,27(1):35-42.
[3] Galloway J N, Dentener F J, Capone D G, et al. Nitrogen cycles:Past, present, and future[J]. Biogeochemistry, 2004,70(2):153-226.
[4] 杨丽丽,龚吉蕊,刘敏,等.氮沉降对草地凋落物分解的影响研究进展[J].植物生态学报,2017,41(8):894-913.
[5] Dentener F, Drevet J, Lamarque J F, et al. Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation[J]. Global Biogeochemical Cycles, 2006,20(4):1-21.
[6] Andreas R, Burrows J P, Hendrik N, et al. Increase in tropospheric nitrogen dioxide over China observed from space[J]. Nature, 2005,437(7055):129-132.
[7] Högberg P. Nitrogen impacts on forest carbon[J]. Nature, 2007,447(7146):781-782.
[8] Clark C M, David T. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands[J]. Nature, 2008,451(7179):712-715.
[9] Liu X, Zhang Y, Han W, et al. Enhanced nitrogen deposition over China[J]. Nature, 2013,494(7438):459-462.
[10] Prescott C E. Litter decomposition:what controls it and how can we alter it to sequester more carbon in forest soils[J]. Biogeochemistry, 2010,101(1/3):133-149.
[11] Clemmensen K E, Bahr A, Ovaskainen O, et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest[J]. Science, 2013,339(6127):1615-1618.
[12] Bardgett R D, Mommer L, De Vries F T. Going underground: Root traits as drivers of ecosystem processes[J]. Trends in Ecology & Evolution, 2014,29(12):692-699.
[13] 张秀娟,吴楚,梅莉,等.水曲柳和落叶松人工林根系分解与养分释放[J].应用生态学报,2006,17(8):1370-1376.
[14] Lin C, Yang Y, Guo J, et al. Fine root decomposition of evergreen broadleaved and coniferous tree species in mid-subtropical China: dynamics of dry mass, nutrient and organic fractions[J]. Plant and Soil, 2011,338(1/2):311-327.
[15] Valverde-Barrantes O J, Raich J W, Russell A E. Fine-root mass, growth and nitrogen content for six tropical tree species[J]. Plant and Soil, 2009,290(1/2):357-370.
[16] Liang K, Chen W, Zhang X, et al. Differential responses of needle and branch order-based root decay to nitrogen addition:dominant effects of acid-unhydrolyzable residue and microbial enzymes[J]. Plant and Soil, 2015,394(1/2):315-327.
[17] 李媛媛,王正文,孙涛.氮添加对温带森林细根长期分解的影响[J].植物研究,2017,37(6):848-854.
[18] Vivanco L, Austin A. Intrinsic effects of species on leaf litter and root decomposition: a comparison of temperate grasses from north and south america[J]. Oecologia, 2006,150(1):97-107.
[19] Huangfu C H, Wei Z S. Nitrogen addition drives convergence of leaf litter decomposition rates between Flaveria bidentis and native plant[J]. Plant Ecology, 2018,219(11):1355-1368.
[20] 涂利华,陈刚,彭勇,等.华西雨屏区苦竹细根分解对模拟氮沉降的响应[J].应用生态学报,2014,25(8):2176-2182.
[21] Wang W, Zhang X, Tao N, et al. Effects of litter types, microsite and root diameters on litter decomposition in Pinus sylvestris plantations of northern China[J]. Plant and Soil, 2014,374(1/2):677-688.
[22] Song X, Quan L, Gu H. Effect of nitrogen deposition and management practices on fine root decomposition in Moso bamboo plantations[J]. Plant and Soil, 2017,410(1/2):207-215.
[23] Xia M X, Talhelm A F, Pregitzer K S. Long-term simulated atmospheric nitrogen deposition alters leaf and fine root decomposition[J]. Ecosystems, 2018,21(1):1-14.
[24] Zhou G X, Zhang J B, Qiu X W, et al. Decomposing litter and associated microbial activity responses to nitrogen deposition in two subtropical forests containing nitrogen-fixing or non-nitrogen-fixing tree species[J]. Scientific Reports, 2018,8(1):12934-12945.
[25] Epelde L, Lanzén A, Mijangos I, et al. Short-term effects of non-grazing on plants, soil biota and aboveground-belowground links in Atlantic mountain grasslands[J]. Scientific Reports, 2017,7(1):15097-15108.
[26] Pregitzer K S, Hendrick R L, Fogel R. The demography of fine roots in response to patches of water and nitrogen[J]. New Phytologist, 1993,125(3):575-580.
[27] Coleman M D, Friend A L, Kern C C. Carbon allocation and nitrogen acquisition in a developing Populus deltoides plantation[J]. Tree Physiology, 2005,24(12):1347-1357.
[28] Hendricks J J, Aber J D, Nadelhoffer K J, et al. Nitrogen controls on fine root substrate quality in temperate forest ecosystems[J]. Ecosystems, 2000,3(1):57-69.
[29] Pregitzer K S, Zak D R, Curtis P S, et al. Atmospheric CO2, soil nitrogen and turnover of fine roots[J]. New Phytologist, 1995,129(4):579-585.
[30] Burton A, Pregitzer K, Ruess R, et al. Root respiration in North American forests: Effects of nitrogen concentration and temperature across biomes[J]. Oecologia, 2002,131(4):559-568.
[31] Burton A J, Pregitzer K S, Hendrick R L. Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests[J]. Oecologia, 2000,125(3):389-399.
[32] Ostertag R. Effects of nitrogen and phosphorus availability on fine-root dynamics in Hawaiian montane forests [J]. Ecology, 2001,82(2):485-499.
[33] 杨玉盛,陈光水,林鹏,等.格氏栲天然林与人工林细根生物量、季节动态及净生产力[J].生态学报,2003,23(9):1719-1730.
[34] Zhang X, Wang W. The decomposition of fine and coarse roots: their global patterns and controlling factors[J]. Scientific Reports, 2015,5(1):9940-9950.
[35] Nadelhoffer K J, Johnson L, Laundre J, et al. Fine root production and nutrient content in wet and moist arctic tundras as influenced by chronic fertilization[J]. Plant and Soil, 2002,242(1):107-113.
[36] 熊德成,黄锦学,杨智杰,等.亚热带6种天然林树种细根养分异质性[J].生态学报,2012,32(14):4343-4351.
[37] 郭润泉,熊德成,宋涛涛,等.模拟氮沉降对杉木幼苗细根化学计量学特征的影响[J].生态学报,2018,38(17):6101-6110.
[38] Kraus T E C, Zasoski R J, Dahlgren R A. Fertility and pH effects on polyphenol and condensed tannin concentrations in foliage and roots[J]. Plant and Soil, 2004,262(1):95-109.
[39] Chen H, Harmon M E, Griffiths R P, et al. Effects of temperature and moisture on carbon respired from decomposing woody roots[J]. Forest Ecology and Management, 2000,138(1/3):51-64.
[40] 魏琳,程积民,井光花,等.黄土高原天然草地3种优势物种细根分解及养分释放对模拟氮沉降的响应[J].水土保持学报,2018,32(1):252-258.
[41] William P, Silver W L, Burke I C, et al. Global-scale similarities in nitrogen release patterns during long-term decomposition[J]. Science, 2007,315(5810):361-364.
[42] Raich J W, Russell A E, Valverde-Barrantes O. Fine root decay rates vary widely among lowland tropical tree species[J]. Oecologia, 2009,161(2):325-330.
[43] Birouste M, Kazakou E, Blanchard A, et al. Plant traits and decomposition: Are the relationships for roots comparable to those for leaves[J]. Annals of Botany, 2011,109(1):463-472.
[44] Roumet C, Birouste M, Picon-Cochard C, et al. Root structure-function relationships in 74 species:evidence of a root economics spectrum related to carbon economy[J]. New Phytologist, 2016,210(3):815-826.
[45] 王卫霞,史作民,罗达,等.南亚热带格木和红椎凋落叶及细根分解特征[J].生态学报,2016,36(12):3479-3487.
[46] Lai Z, Zhang Y, Liu J, et al. Fine-root distribution, production, decomposition, and effect on soil organic carbon of three revegetation shrub species in northwest China[J]. Forest Ecology & Management, 2016,359(14):381-388.
[47] Fan P, Guo D. Slow decomposition of lower order roots: a key mechanism of root carbon and nutrient retention in the soil[J]. Oecologia, 2010,163(2):509-515.
[48] Dijkstra F, Hobbie S M H, Knops J, et al. Nitrogen deposition and plant species interact to influence soil carbon stabilization[J]. Ecology Letters, 2004,7(1):1192-1198.
[49] Moorhead D, Sinsabaugh R. A theoretical model of litter decay and microbial interaction[J]. Ecological Monographs, 2006,76(2):151-174.
[50] 任立宁,刘世荣,蔡春菊,等.川南地区毛竹和林下植被芒箕细根分解特征[J].生态学报,2018,38(21):7638-7646.
[51] Yuan Z Y, Chen H Y H. Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes[J]. Nature Climate Change, 2015,5(5):465-469.
[52] 黄园园, Luise O,杨晓霞,等.养分添加对青藏高原高寒草甸丛枝菌根真菌的影响[J].北京大学学报:自然科学版,2014,50(5):911-918.
[53] 谢雨彤,简保磊,李贤伟,等.低效柏木林窗改造模式下香椿细根分解及其养分释放[J].应用与环境生物学报,2018,24(3):525-532.
[54] 赵超,王文娟,阮宏华,等.氮添加对杨树人工林表层土壤微生物群落结构的影响[J].东北林业大学学报,2015,43(6):83-88.
[55] 王晖,莫江明,鲁显楷,等.南亚热带森林土壤微生物量碳对氮沉降的响应[J].生态学报,2008,28(2):470-478.
[56] 程淑兰,方华军,徐梦,等.氮沉降增加情景下植物—土壤—微生物交互对自然生态系统土壤有机碳的调控研究进展[J].生态学报,2018,38(23):8285-8295.
[57] 多祎帆.亚热带3种森林类型土壤微生物生物量及其多样性研究[D].长沙:中南林业科技大学,2012.
[58] Fog K. The effect of added nitrogen on the rate of decomposition of organic matter[J]. Biological Reviews, 2008,63(3):433-462.
[59] Prescott C E. Does nitrogen availability control rates of litter decomposition in forests[J]. Plant and Soil, 1995,169(1):83-88.
[60] Xu W, Shi L, Chan O, et al. Assessing the effect of litter species on the dynamic of bacterial and fungal communities during leaf decomposition in microcosm by molecular techniques[J]. Plos One, 2013,8(12).DOI:10.1371/journal.pone.0084613.
[61] 王卫霞.南亚热带不同树种人工林生态系统碳氮特征研究[D].北京:中国林业科学研究院,2013.
[62] 蔡飞.杉木和木荷细根在江西大岗山天然常绿阔叶林中的分解动态研究[D].北京:北京林业大学,2014.
[63] 李艺坚,谢学方,孔令泽,等.林下蚯蚓养殖对胶园土壤速效养分、酶活性和橡胶树细根根密度的影响[J].热带农业科学,2019,39(2):61-65.
[64] 张秀娟,梅莉,王政权,等.细根分解研究及其存在的问题[J].植物学通报,2005,22(2):246-254.
[65] Van Diepen L T A, Lilleskov E A, Pregitzer K S, et al. Simulated nitrogen deposition causes a decline of intra and extraradical abundance of arbuscular mycorrhizal fungi and changes in microbial community structure in northern hardwood forests[J]. Ecosystems, 2010,13(5):683-695.
[66] 冀卫萍,王健健,赵学春,等.干旱区骆驼刺群落细根生产与周转[J].生态学杂志,2013,32(10):2635-2640.
[67] 赵学春,来利明,朱林海,等.三工河流域两种琵琶柴群落细根生物量、分解与周转[J].生态学报,2014,34(15):4295-4303.
[68] Xiao T L, De Liang K, Qing M P, et al. Nitrogen and water availability interact to affect leaf stoichiometry in a semi-arid grassland[J]. Oecologia, 2012,168(2):301-310.
[69] Suttle K B, Thomsen M A, Power M E. Species interactions reverse grassland responses to changing climate[J]. Science, 2007,315(5812):640-642.
[70] Cleland E E, Chiariello N R, Loarie S R, et al. Diverse responses of phenology to global changes in a grassland ecosystem[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(37):13740-13744.
[71] 罗永清,赵学勇,王涛,等.植物根系分解及其对生物和非生物因素的响应机理研究进展[J].草业学报,2017,26(2):197-207.
[72] Henry H A L, Cleland E E, Field C B, et al. Interactive effects of elevated CO2, N deposition and climate change on plant litter quality in a California annual grassland[J]. Oecologia, 2005,142(3):465-473.
[73] Li Y L, Yang F F, Ou Y X, et al. Changes in forest soil properties in different successional stages in lower tropical China[J]. Plos One, 2013,8(11).DOI:10.1371/journal.pone.0081359.
[74] García-Palacios P, Prieto I, Ourcival J M, et al. Disentangling the litter quality and soil microbial contribution to leaf and fine root litter decomposition responses to reduced rainfall[J]. Ecosystems, 2016,19(3):490-503.
[75] 王瑞丽.三峡库区马尾松人工林细根生长动态研究[D].北京:中国林业科学研究院,2012.
[76] Xu X, Lian Y, Duan C, et al. Effect of N addition, moisture, and temperature on soil microbial respiration and microbial biomass in forest soil at different stages of litter decomposition[J]. Journal of Soils and Sediments, 2016,16(5):1421-1439.
[77] 蔡瑛莹,熊德成,李茵茵,等.土壤增温和氮沉降对杉木幼树细根生物量的影响[J].亚热带资源与环境学报,2018,13(1):36-44.
[78] Robert L S. Phenol oxidase, peroxidase and organic matter dynamics of soil[J]. Soil Biology & Biochemistry, 2010,42(3):391-404.
[79] 李吉玫,张毓涛,李建贵,等.模拟氮沉降对天山云杉细根分解及其养分释放的影响[J].西北植物学报,2015,35(1):182-188.
[80] 谷利茶,王国梁,景航,等.氮添加对油松不同径级细根分解及其养分释放的影响[J].应用生态学报,2017,28(9):2771-2777.
[81] 武志超,吴福忠,杨万勤,等.高山森林3种细根分解初期微生物生物量动态[J].生态学报,2012,32(13):4094-4102.
[82] 胡晓辉,李娟,郭世荣,等.钙对根际低氧胁迫下黄瓜幼苗根系呼吸代谢的影响[J].园艺学报,2006,33(5):1113-1116.
[83] Yang Y S, Chen G S, Guo J F, et al. Decomposition dynamic of fine roots in a mixed forest of Cunninghamia lanceolata and Tsoongiodendron odorum in mid-subtropics[J]. Annals of Forest Science, 2004,61(1):65-72.
[84] Frey S D, Knorr M, Parrent J L, et al. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests[J]. Forest Ecology & Management, 2004,196(1):159-171.
[85] Luo L, Meng H, Wu R N, et al. Impact of nitrogen pollution deposition on extracellular enzyme activity, microbial abundance and carbon storage in coastal mangrove sediment[J]. Chemosphere, 2017,177(1):275-283.
[86] Deforest J L, Scott L G. Available organic soil phosphorus has an important influence on microbial community composition[J]. Soil Science Society of America Journal, 2010,74(6):2059-2066.
[87] 常雅军.秦岭西部针叶林凋落叶分解及其对模拟氮沉降的响应[D].兰州:兰州大学,2009.
[88] Shao Y H, Liu T, Eisenhauer N, et al. Plants mitigate detrimental nitrogen deposition effects on soil biodiversity[J]. Soil Biology and Biochemistry, 2018,127(1):178-186.
[89] Whalen E, Smith R, Grandy S, et al. Manganese limitation as a mechanism for reduced decomposition in soils under atmospheric nitrogen deposition[J]. Soil Biology and Biochemistry, 2018,127(1):252-263.
[90] Tietema A. Microbial carbon and nitrogen dynamics in coniferous forest floor material collected along a European nitrogen deposition gradient[J]. Forest Ecology and Management, 1998,101(1/3):29-36.
[91] Hansen K, Vesterdal L, Schmidt I K, et al. Litterfall and nutrient return in five tree species in a common garden experiment[J]. Forest Ecology & Management, 2009,257(10):2133-2144.
[92] 邓小文,韩士杰.氮沉降对森林生态系统土壤碳库的影响[J].生态学杂志,2007,26(10):1622-1627.
[93] Xu G L, Mo J M, Zhou G Y, et al. Preliminary response of soil fauna to simulated N deposition in three typical subtropical forests[J]. Pedosphere, 2006,16(5):596-601.
[94] Elser J J, Bracken M E S, Cleland E E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecology Letters, 2007,10(12):1135-1142.
[95] Hobbie S E, Vitousek P M. Nutrient limitation of decomposition in Hawaiian forests[J]. Ecology, 2000,81(7):1867-1877.
[96] 郑俊强,郭瑞红,李东升,等.氮沉降和干旱对阔叶红松林凋落物分解的影响[J].北京林业大学学报,2016,38(4):21-28.
[97] Silver W L, Miya R K. Global patterns in root decomposition:comparisons of climate and litter quality effects[J]. Oecologia, 2001,129(3):407-419.
[98] Sun T, Dong L, Mao Z. Simulated atmospheric nitrogen deposition alters decomposition of ephemeral roots[J]. Ecosystems, 2015,18(7):1240-1252.
[99] Rousk J, Bååth E, Brookes P C, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil[J]. the Isme Journal, 2010,4(10):1340-1351.
[100] 王巧红,宫渊波,张君.森林生态系统对大气氮沉降的响应[J].四川林业科技,2006,27(1):19-24.
Similar References:

Memo

-

Last Update: 2020-02-25

Online:11858       Total Traffic Statistics:27385082

Website Copyright: Research of Soil and Water Conservation Shaanxi ICP No.11014090-10
Tel: 029-87012705 Address: Editorial Department of Research of Soil and Water Conservation, No. 26, Xinong Road, Yangling, Shaanxi Postcode: 712100