[1]Liu Fang,Xia Dong,Ma Jiaxin,et al.Change Characteristics of Organic Carbon Components and Stoichiometric Ratios of Carbon, Nitrogen and Phosphorus in the Early Stage of Vegetation Succession in Artificial Slope Restoration[J].Research of Soil and Water Conservation,2024,31(02):68-75.
Copy

Change Characteristics of Organic Carbon Components and Stoichiometric Ratios of Carbon, Nitrogen and Phosphorus in the Early Stage of Vegetation Succession in Artificial Slope Restoration

References:
[1] 张春霞,郝明德,魏孝荣等.黑垆土长期轮作培肥土壤有机质氧化稳定性的研究[J].土壤肥料,2004(03):10-12,16.
Zhang C X, Hao M D, Wei X R et al. Study of long-term rotation and fertilizations on black loessal soilon the oxidation stability of soil organic matter[J]. Soil Fertilizer,2004(03):10-12,16.
[2] Sun C,Xue S,Chai Z, et al. Effects of land-use types on the vertical distribution of fractions of oxidizable organic carbon on the Loess Plateau, China[J]. Journal of Arid Land, 2016,8(2):221-231.
[3] 朱玉荷,肖虹,王冰,等.蒙古高原草地不同深度土壤碳氮磷化学计量特征对气候因子的响应[J].植物生态学报,2022,46(3):340-349.
Zhu Y H, Xiao H, Wang B et al. Stoichiometric characteristics of soil carbon, nitrogen and phosphorus along soil depths in response to climatic variables in grasslands on the Mongolia Plateau[J]. Chinese Journal of Plant Ecology,2022,46(3):340-349.
[4] Kashian M D, Romme H W, Tinker B D, et al. Carbon storage on landscapes with stand-replacing fires[J]. Bioscience,2006,56(7):598-606.
[5] Li D, Waller D. Long-term shifts in the patterns and underlying processes of plant associations in Wisconsin forests[J]. Global Ecology & Biogeography,2016,25(5):516-526.
[6] Hansen W D, Romme W H, Ba A, et al. Shifting ecological filters mediate postfire expansion of seedling aspen(Populus tremuloides)in Yellowstone[J]. Forest Ecology and Management, 2016,362:218-230.
[7] 张佳慧,王兴昌,王传宽.帽儿山温带森林演替初期土壤碳、氮、磷计量特征的变化[J].应用生态学报,2016,27(10):3189-3195.
Zhang J H, Wang X C, Wang C K et al. Changes in stoichiometry of soil carbon, nitrogen and phosphorus in the early stage of tem perate forest succession in Maoershan, Northeast China[J].Chinese Journal of Applied Ecology,2016,27(10):3189-3195.
[8] 张健,刘国彬,许明祥,等.黄土丘陵区植被次生演替灌木初期的土壤养分特征[J].西北林学院学报,2009,24(1):53-57.
Zang J, Liu G B, Xu M X et al. Soil Nutrients characteristics in shrub appearance stage of vegetation Secondary Succession in the Hilly-gullied Loess Region[J]. Journal of Northwest Forestry University,2009,24(1):53-57.
[9] 汤茜,丁访军,朱四喜,等.茂兰喀斯特地区不同植被演替阶段对土壤化学性质与酶活性的影响[J].生态环境学报,2020,29(10):1943-1952.
Tang Q, Ding F J, Zhu S X et al. Effects of different vegetative succession stages on soil chemical properties and enzyme activities in Karst region of Maolan[J]. Ecology and Environmental Sciences,2020,29(10):1943-1952.
[10] 罗婷,许文年,程虎,等.向家坝水电站不同修复模式下根际土壤微生物化学计量特征[J].长江流域资源与环境,2019,28(2):450-458.
Luo T, Xu W N, Cheng H et al. Stoichiometric characteristics of rhizosphere soil in different restoration models of Xiangjiaba Hydropower Station[J]. Resources and Environment in the Yangtze Basin, 2019,28(2):450-458.
[11] 丁瑜,胡文静,夏振尧,等.生态护坡生境基材土壤肥力动态变化研究[J].水生态学杂志,2017,38(2):31-37.
Ding Y, Hu W J, Xia Z Y et al. Soil fertility dynamics of substrate used for ecological slope protection[J]. Journal of Hydroecology,2017,38(2):31-37.
[12] 夏振尧.向家坝水电站扰动边坡人工植被群落初期演替过程与稳定性研究[D].武汉:武汉大学,2010.
Xia Z Y. Earlier Succession and stability of artificial vegetation community on disturbed slope in Xiangjiaba Hydropower Station[D]. Wuhan:Wuhan University,2010.
[13] 国家能源局.NB/T35082-2016,水电工程陡边坡植被混凝土生态修复技术规范[S].北京:中国电力出版社,2016.
National Energy Administration. NB/T35082-2016,Techincal code for eco-restoration of vegetation concrete on steep slope of hydropower projects[S].Beijing:China Electric Power Press,2016.
[14] 张智,安冰,付军等.广西国有派阳山林场桉树人工林土壤肥力质量评价[J].西南农业学报, 2022,35(09):2137-2143.
Zhang Z, An B, Fu J et al. Soil fertility quality evaluation in eucalyptus plantation of state-owned Paiyangshan Forest Farm in Guangxi[J]. Southwest China Journal of Agricultural Sciences,2022,35(09):2137-2143.
[15] 胡月华.土壤有机碳组分及微生物功能多样性对耕作方式与秸秆覆盖量的响应[J].江苏农业科学,2023,51(4):206-212.
Hu Y H. Responses of soil organic carbon components and microbial functional diversity to tillage methods and straw mulch[J]. Jiangsu Agricultural Sciences,2023,51(4):206-212.
[16] 黄凯文,马珍,苫君月,等.土壤有机碳损失机制研究进展[J].江苏农业科学,2022,50(24):26-32.
Huang K W, Ma Z, Shan J Y et al. Research progress of soil organic carbon loss mechanism[J].Jiangsu Agricultural Sciences,[16]2022,50(24):26-32.
[17] Ding S, Xue S, Liu G. Effects of long-term fertilization on oxidizable organic carbon fractions on the Loess Plateau, China[J]. Journal of Arid Land, 2016,008(4):579-590.
[18] Chan K Y, Bowman A, Oates A. Oxidizible organic carbon fractions and soil quality changes in an oxic paleustalf under different pasture leys[J]. Soil Science, 2001,166(1):p 61-67.
[19] Guareschi R F, Pereira M G, Perin A. Oxidizable carbon fractions in Red Latosol under different management systems[J]. Revista Ciência Agronômica, 2013,44(2):242-250
[20] Davidson E A, Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature, 2006,440(7081):165-173.
[21] 孙彩丽,刘国彬,马海龙,等.不同沙生植被土壤易氧化有机碳组分及其含量的差异[J].草地学报,2012,20(5):863-869.
Sun C L, Liu G D, Ma H L et al. Variation characteristics and fractions of oxidizable organic carbon in different sandy vegetation soil[J]. Acta Agrestia Sinica,2012,20(5):863-869.
[22] Ye Y, Liang X, Chen Y, et al. Carbon, nitrogen and phosphorus accumulation and partitioning, and C:N:P stoichiometry in late-Season rice under different water and nitrogenmanagements[J]. Plos One, 2014,9(7):e101776.
[23] Dolezal J, Homma K, Takahashi K, et al. Primary succession following deglaciation at Koryto Glacier valley, Kamchatka[J]. Arctic, Antarctic, and Alpine Research, 2008,40(2):309-322.
[24] 王艳丹,余建琳,张梦寅等.施氮对干热河谷农田土壤有机碳及其组分的影响[J].中国土壤与肥料,2022,No.305(09):8-17.
Wang Y D, Yu J L, Zhang M Y et al. Effects of nitrogen application on agricultural soil organic carbon and its components in the dry-hot valley[J]. Chinese Soil and Fertilizer,2022,No.305(09):8-17.
[25] Hans L, John A R, Gaius R S, et al. Plant nutrient-acquisition strategies change with soil age[J]. Trends in Ecology & Evolution, 2008,23(2):95-103.
[26] 简尊吉,倪妍妍,徐瑾,等.马尾松人工林土壤碳氮磷生态化学计量学特征的纬度变化[J].林业科学研究,2022,35(2):1-8.
Jian Z J, Ni Y Y, Xu J et al. Latitudinal variations of soil C-N-P stoichiometry in Pinus massoniana(Lamb.)plantations[J].Forest Research,2022,35(2):1-8.
[27] 曾全超,李鑫,董扬红,等.陕北黄土高原土壤性质及其生态化学计量的纬度变化特征[J].自然资源学报,2015,30(5):870-879.
Zeng Q C, Li X, Dong Y H et al. Ecological stoichiometry characteristics and physical-chemical properties of soils at different latitudes on the Loess Plateau[J].Journal of Natural Resources,2015,30(5):870-879.
[28] 刘耀辉,郑淇元,文杰,等.江西省森林土壤碳氮磷含量及其化学计量比特征分析[J].南方林业科学,2021,49(2):42-46.
Liu Y H, Zheng Q Y, Wen J et al. Carbon nitrogen phosphorus and its chemical measurement ratio characteristics in forest soils in Jiangxi Province[J].South China Forestry Science,2021,49(2):42-46.
[29] 刘丹,游郭虹,宋小艳等.施磷对川西北高寒草地土壤磷形态及有效性的影响[J].生态学报,2023,43(06):2378-2387.
Liu D, You G H, Song X Y et al. Effects of phosphorus fertilization on soil phosphorus fractions and availability in an alpine grassland of northwestern Sichuan[J].Acta Ecologica Sinica,2023,43(06):2378-2387.
[30] Chen L, Li P, Yang Y. Dynamic patterns of nitrogen: Phosphorus ratios in forest soils of China under changing environment[J]. Journal of Geophysical Research Biogeosciences, 2016,121(9):2410-2421.
Similar References:

Memo

-

Last Update: 2024-04-20

Online:2798       Total Traffic Statistics:23632501

Website Copyright: Research of Soil and Water Conservation Shaanxi ICP No.11014090-10
Tel: 029-87012705 Address: Editorial Department of Research of Soil and Water Conservation, No. 26, Xinong Road, Yangling, Shaanxi Postcode: 712100