PDF DownloadHTML ]" id="html" rel="external">HTML
[1]MENG Meng,XU Yongyan.13C Traces the Dynamic Distribution Characteristics of Photosynthetic Carbon of Different Plants in Different Organ-Soil Systems[J].Research of Soil and Water Conservation,2021,28(01):331-336344.
Copy

13C Traces the Dynamic Distribution Characteristics of Photosynthetic Carbon of Different Plants in Different Organ-Soil Systems

References:
[1] 孙昭安,陈清,韩笑,等.13C脉冲标记法定量冬小麦光合碳分配及其向地下的输入[J].环境科学,2018,39(6):1-10.
[2] 孙海岩,安婷婷,谢柠桧,等.地膜覆盖与施氮肥对光合碳在玉米—土壤系统分配的影响[J].土壤通报,2018,49(4):902-910.
[3] 安婷婷,汪景宽,李双异,等.用13C脉冲标记方法研究施肥与地膜覆盖对玉米光合碳分配的影响[J].土壤学报,2013,50(5):948-955.
[4] 陈锦,宋明华,李以康.13C脉冲标记揭示放牧对高寒草甸同化碳分配的影响[J].植物生态学报,2019,43(7):576-584.
[5] 任逸文,肖谋良,袁红朝,等.水稻光合碳在植物—土壤系统中的分配及其对CO2升高和施氮的响应[J].应用生态学报,2018,29(5):1397-1404.
[6] Gavito M E, Jakobsen I, Mikkelsen T N, et al. Direct evidence for modulation of photosynthesis by an arbuscular mycorrhiza-induced carbon sink strength[J]. New Phytologist, 2019,223(2):896-907.
[7] Qu M, Chen G, Bunce J A, et al. Systematic biology analysis on photosynthetic carbon metabolism of maize leaf following sudden heat shock under elevated CO2[J]. Scientific Reports, 2018,8(1):1-11.
[8] Stinziano J R, Bauerle W L, Way D A. Modelled net carbon gain responses to climate change in boreal trees: Impacts of photosynthetic parameter selection and acclimation[J]. Global Change Biology, 2019,25(4):1445-1465.
[9] Park T, Chen C, Macias-Fauria M, et al. Changes in timing of seasonal peak photosynthetic activity in northern ecosystems[J]. Global Change Biology, 2019,25(7):2382-2395.
[10] Wingate L, Ogée J, Burlett R, et al. Photosynthetic carbon isotope discrimination and its relationship to the carbon isotope signals of stem, soil and ecosystem respiration[J]. New Phytologist, 2010,188(2):576-589.
[11] Tosens T, Laanisto L. Mesophyll conductance and accurate photosynthetic carbon gain calculations[J]. Journal of Experimental Botany, 2018,69(22):5315-5318.
[12] Halpern M, Bar-Tal A, Lugassi N, et al. The role of nitrogen in photosynthetic acclimation to elevated CO2 in tomatoes[J]. Plant and Soil, 2019,434(1/2):397-411.
[13] Mercado L M, Medlyn B E, Huntingford C, et al. Large sensitivity in land carbon storage due to geographical and temporal variation in the thermal response of photosynthetic capacity[J]. New Phytologist, 2018,218(4):1462-1477.
[14] 邓秀秀,肖文发,曾立雄,等.马尾松幼苗光合产物的运输与分配特征[J].林业科学,2019,55(7):27-34.
[15] 李增强,赵炳梓,张佳宝.玉米品种对根际微生物利用光合碳的影响[J].土壤学报,2016,53(5):1286-1295.
[16] 魏明月,云菲,刘国顺,等.不同光环境下烟草光合特性及同化产物的积累与分配机制[J].应用生态学报,2017,28(1):159-168.
[17] 刘云鹏,梁效贵,申思,等.梯度干旱胁迫下玉米光合碳的日变化及品种偏向性[J].中国农业科学,2017,50(11):2083-2092.
[18] 赵晴,杨梦雅,赵国顺,等.缓释肥用量对夏谷光合特性,物质积累分配和产量性状的影响[J].中国农学通报,2019,35(12):28-33.
[19] 张蕊,赵钰,何红波,等.基于稳定碳同位素技术研究大气CO2浓度升高对植物—土壤系统碳循环的影响[J].应用生态学报,2017,28(7):2379-2388.
[20] 张强,龙民慧,宋运贤,等.不同氮形态对濒危药用植物三叶青叶片光合,能量分配和抗氧化酶活性的影响[J].生态学杂志,2018,37(3):877-883.
[21] 付忠,谢世清,徐文果,等.不同光照强度下谢君魔芋的光合作用及能量分配特征[J].应用生态学报,2016,27(4):1177-1188.
[22] 朱丽,黄刚,唐立松,等.梭梭根系的水分再分配特征对其生理和形态的影响[J].干旱区研究,2017,34(3):638-647.
[23] 代永欣,王林,王延书,等.摘叶造成的碳限制对刺槐碳素分配和水力学特性的影响[J].植物科学学报,2017,35(5):750-758.
[24] 朱启林,向蕊,汤利,等.间作对氮调控玉米光合速率和光合氮利用效率的影响[J].植物生态学报,2018,42(6):672-680.
[25] 葛体达,王东东,祝贞科,等.碳同位素示踪技术及其在陆地生态系统碳循环研究中的应用与展望[J].植物生态学报:生态技术与方法专辑,2020,44, DOI:10,17521/cjpe, 2019.0208.
Similar References:

Memo

-

Last Update: 2021-01-15

Online:557       Total Traffic Statistics:23885573

Website Copyright: Research of Soil and Water Conservation Shaanxi ICP No.11014090-10
Tel: 029-87012705 Address: Editorial Department of Research of Soil and Water Conservation, No. 26, Xinong Road, Yangling, Shaanxi Postcode: 712100