[1]Zhang Hanbo,Dou Shiqing,Wen Ying.Analysis of Spatiotemporal Dynamics of Precipitation in Southwest China Based on Remote Sensing Precipitation Products[J].Research of Soil and Water Conservation,2024,31(05):265-278.[doi:10.13869/j.cnki.rswc.2024.05.030]
Copy

Analysis of Spatiotemporal Dynamics of Precipitation in Southwest China Based on Remote Sensing Precipitation Products

References:
[1]益言.世界经济论坛发布《2023年全球风险报告》[J].中国货币市场,2023(3):66-72.
Yi Y. WEF releases global risk report 2023[J]. China Money, 2023(3):66-72.
[2]刘洁,黄本胜,陈晓宏,等. GPM遥感降水产品在广东省的极端降水事件适用性分析[J].南水北调与水利科技:中英文,2023,21(1):87-94.
Liu J, Huang B S, Chen X H, et al. Applicability analysis of GPM remote sensing precipitation products in extreme precipitation events in Guangdong Province[J]. South-to-North Water Transfers and Water Science & Technology, 2023,21(1):87-94.
[3]黎扬兵,张洪波,杨天增,等.基于MGWR的渭河流域TRMM降水产品空间降尺度分析[J].农业工程学报,2022,38(23):141-151.
Li Y B, Zhang H B, Yang T Z, et al. A MGWR-based spatial downscaling for TRMM precipitation in the Weihe River Basin[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022,38(23):141-151.
[4]Liu J, Huang B S, Chen L X, et al. Evaluation of GPM and TRMM and their capabilities for capturing solid and light precipitations in the headwater basin of the Heihe River[J]. Atmosphere, 2023,14(3):453.
[5]Ali S, Tong D M, Xu Z T, et al. Characterization of drought monitoring events through MODIS-and TRMM-based DSI and TVDI over South Asia during 2001—2017[J]. Environmental Science and Pollution Research International, 2019,26(32):33568-33581.
[6]吕爱锋,亓珊珊.遥感及再分析降水产品在缺资料干旱内陆盆地的适用性评估[J].地球信息科学学报,2022,24(9):1817-1834.
Lv A F, Qi S S. Applicability analysis of satellite-based and reanalysis precipitation products in poorly-gauged arid inland basins[J]. Journal of Geo-Information Science, 2022,24(9):1817-1834.
[7]张寒博,杨骥,荆文龙,等.多种特征因子结合GBDT的降水数据降尺度方法研究[J].中国环境科学,2023,43(4):1867-1882.
Zhang H B, Yang J, Jing W L, et al. Downscaling method of precipitation data based on GBDT combined with multiple eigenfactors[J]. China Environmental Science, 2023,43(4):1867-1882.
[8]崔路明,王思梦,刘轶欣,等. TRMM和GPM卫星降水数据在中国三大流域的降尺度对比研究[J].长江流域资源与环境,2021,30(6):1317-1328.
Cui L M, Wang S M, Liu Y X, et al. Comparative study on downscaling of TRMM and GPM satellite precipitation data in three major river basins in China[J]. Resources and Environment in the Yangtze Basin, 2021,30(6):1317-1328.
[9]卢新玉,刘艳,王秀琴,等.新疆地区多源降水融合试验[J].干旱区研究,2020,37(5):1223-1232.
Lu X Y, Liu Y, Wang X Q, et al. Multisource precipitation data merging experiment in Xinjiang[J]. Arid Zone Research, 2020,37(5):1223-1232.
[10]李强宇,楚岱蔚,朱晓晨.长三角地区常用遥感降水产品质量评估[J].科学技术与工程,2021,21(12):4801-4810.
Li Q Y, Chu D W, Zhu X C. Quality evaluation of precipitation products commonly used by remote sensing in the Yangtze River Delta[J]. Science Technology and Engineering, 2021,21(12):4801-4810.
[11]薛鹏飞,余钟波,谷黄河.雅鲁藏布江流域GPM和TRMM遥感降水产品精度评估[J].水电能源科学,2020,38(11):13-16.
Xue P F, Yu Z B, Gu H H. Accuracy evaluation of GPM and TRMM remote sensing precipitation products in Yarlung Zangbo River Basin[J]. Water Resources and Power, 2020,38(11):13-16.
[12]Mahdavi T. Comparison of two products of satellite precipitation(TRMM_3B42 v7-3-hourly-Research grade)and GPM-IMERG(V06-half-hourly-Early)in the east of lake urmia, Iran[J]. Journal of the Indian Society of Remote Sensing, 2023,51(1):43-60.
[13]Retalis A, Katsanos D, Tymvios F, et al. Comparison of GPM IMERG and TRMM 3B43 products over Cyprus[J]. Remote Sensing, 2020,12(19):3212.
[14]王军,谭金凯.气候变化背景下中国沿海地区灾害风险研究与应对思考[J].地理科学进展,2021,40(5):870-882.
Wang J, Tan J K. Understanding the climate change and disaster risks in coastal areas of China to develop coping strategies[J]. Progress in Geography, 2021,40(5):870-882.
[15]王莺,张强,王劲松,等.21世纪以来干旱研究的若干新进展与展望[J].干旱气象,2022,40(4):549-566.
Wang Y, Zhang Q, Wang J S, et al. New progress and prospect of drought research since the 21st century[J]. Journal of Arid Meteorology, 2022,40(4):549-566.
[16]卢晓宁,张静怡,王玲玲,等.综合考虑植被、温度和降水的四川省月尺度伏旱遥感监测[J].自然资源学报,2017,32(7):1145-1157.
Lu X N, Zhang J Y, Wang L L, et al. Remote sensing monitoring of summer drought at monthly-scale considering vegetation, temperature and precipitation in Sichuan Province[J]. Journal of Natural Resources, 2017,32(7):1145-1157.
[17]刘月璇.基于多源遥感数据的内蒙古干旱指数模型构建及监测研究[D].呼和浩特:内蒙古师范大学,2021.
Liu Y X. Drought index model construction and drought monitoring in Inner Mongolia based on multi-source remote sensing data[D]. Hohhot:Inner Mongolia Normal University, 2021.
[18]靖娟利,罗福林,王永锋,等.1998—2017年滇黔桂岩溶区降水时空动态特征[J].水土保持研究,2019,26(5):158-165.
Jing J L, Luo F L, Wang Y F, et al. Spatial and temporal dynamics of precipitation in Dian-Qian-Gui Karst Area from 1998 to 2017[J]. Research of Soil and Water Conservation, 2019,26(5):158-165.
[19]Nouri M, Homaee M. Drought trend, frequency and extremity across a wide range of climates over Iran[J]. Meteorological Applications, 2020,27(2):1899.
[20]贾艳青,张勃.基于日SPEI的近55 a西南地区极端干旱事件时空演变特征[J].地理科学,2018,38(3):474-483.
Jia Y Q, Zhang B. Spatial-temporal variability characteristics of extreme drought events based on daily SPEI in the southwest China in recent 55 years[J]. Scientia Geographica Sinica, 2018,38(3):474-483.
[21]史晓亮,吴梦月,丁皓. SPEI和植被遥感信息监测西南地区干旱差异分析[J].农业机械学报,2020,51(12):184-192.
Shi X L, Wu M Y, Ding H. Difference analysis of SPEI and vegetation remote sensing information in drought monitoring in southwest China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020,51(12):184-192.
[22]窦世卿,张寒博,徐勇,等. TRMM降水数据在长江流域的降尺度分析与校正[J].中国农业气象,2021,42(5):377-389.
Dou S Q, Zhang H B, Xu Y, et al. Research on downscaling and correction of TRMM data in the Yangtze River Basin[J]. Chinese Journal of Agrometeorology, 2021,42(5):377-389.
[23]张寒博,徐勇,窦世卿,等.基于GWR模型的长江流域TRMM数据降尺度[J].水土保持研究,2021,28(3):149-155,162.
Zhang H B, Xu Y, Dou S Q, et al. TRMM downscaling data of Yangtze based on GWR model[J]. Research of Soil and Water Conservation, 2021,28(3):149-155,162.
[24]刘宪锋,潘耀忠,朱秀芳,等.2000—2014年秦巴山区植被覆盖时空变化特征及其归因[J].地理学报,2015,70(5):705-716.
Liu X F, Pan Y Z, Zhu X F, et al. Spatiotemporal variation of vegetation coverage in Qinling-Daba Mountains in relation to environmental factors[J]. Acta Geographica Sinica, 2015,70(5):705-716.
[25]肖杨,周旭,罗雪,等.黔中地区近60年潜在蒸散量时空变化特征及主导因素识别[J].水土保持研究,2021,28(6):190-198.
Xiao Y, Zhou X, Luo X, et al. Spatiotemporal variation characteristics of potential evapotranspiration and identification of leading factors in central Guizhou in recent 60 years[J]. Research of Soil and Water Conservation, 2021,28(6):190-198.
[26]刘慧媛,邹磊,邢万里.1961—2018年海河流域极端降水时空演变特征[J].水电能源科学,2021,39(12):1-6.
Liu H Y, Zou L, Xing W L. Temporal and spatial variation of extreme precipitation in Haihe River Basin during 1961—2018[J]. Water Resources and Power, 2021,39(12):1-6.
[27]巩杰,高秉丽,李焱,等.1960—2020年黄河流域气候干湿状况时空分异及变化趋势[J].中国农业气象,2022,43(3):165-176.
Gong J, Gao B L, Li Y, et al. Spatiotemporal variation of climate dry-wet condition and its potential trend in the Yellow River Basin from 1960 to 2020[J]. Chinese Journal of Agrometeorology, 2022,43(3):165-176.
[28]张寒博,窦世卿,温颖,等.遥感降水数据空间降尺度及干旱时空监测[J].水土保持学报,2022,36(1):153-160.
Zhang H B, Dou S Q, Wen Y, et al. Spatial downscaling of remote sensing precipitation data and spatiotemporal monitoring of drought[J]. Journal of Soil and Water Conservation, 2022,36(1):153-160.
[29]李茂华.基于GPM卫星降水产品的台风暴雨洪水风险研究[D].南京:南京大学,2021.
Li M H. Risk Analysis of typhoon rainstorm and flood disaster based on GPM IMERG data[D]. Nanjing:Nanjing University, 2021.
[30]黄子立,吴小飞,毛江玉. CMIP6模式水平分辨率对模拟我国西南地区夏季极端降水的影响评估[J].高原气象,2021,40(6):1470-1483.
Huang Z L, Wu X F, Mao J Y. An evaluation for impacts of the horizontal resolution of CMIP6 models on simulating extreme summer rainfall over southwest China[J]. Plateau Meteorology, 2021,40(6):1470-1483.
Similar References:

Memo

-

Last Update: 2024-08-10

Online:256       Total Traffic Statistics:27134985

Website Copyright: Research of Soil and Water Conservation Shaanxi ICP No.11014090-10
Tel: 029-87012705 Address: Editorial Department of Research of Soil and Water Conservation, No. 26, Xinong Road, Yangling, Shaanxi Postcode: 712100