[1]Liu Shaohua,Zhao Min,Wang Yajuan,et al.Effects of Stand Density on Soil Physicochemical Properties and Enzyme Activities in Robinia seudoacacia Plantations in the Loess Hilly-Gully Region[J].Research of Soil and Water Conservation,2024,31(05):123-129,138.[doi:10.13869/j.cnki.rswc.2024.05.026]
Copy

Effects of Stand Density on Soil Physicochemical Properties and Enzyme Activities in Robinia seudoacacia Plantations in the Loess Hilly-Gully Region

References:
[1]舒韦维,卢立华,李华,等.林分密度对杉木人工林林下植被和土壤性质的影响[J].生态学报,2021,41(11):4521-4530.
Shu W W, Lu L H, Li H, et al. Effects of stand density on understory vegetation and soil properties of Cunninghamia lanceolata plantation[J]. Acta Ecologica Sinica, 2021,41(11):4521-4530.
[2]Bradford J B, D'Amato A W. Recognizing trade-offs in multi-objective land management[J]. Frontiers in Ecology and the Environment, 2012,10(4):210-216.
[3]刘慧敏,韩海荣,程小琴,等.不同密度调控强度对华北落叶松人工林土壤质量的影响[J].北京林业大学学报,2021,43(6):50-59.
Liu H M, Han H R, Cheng X Q, et al. Effects of different density regulation intensities on soil quality in Larix principis-rupprechtii plantation[J]. Journal of Beijing Forestry University, 2021,43(6):50-59.
[4]赵伟文,梁文俊,魏曦.不同林分密度华北落叶松人工林土壤养分特征[J].西南师范大学学报:自然科学版,2019,44(4):84-92.
Zhao W W, Liang W J, Wei X. Soil nutrient characteristics of Larix principis rupprechtii plantations with different stand densities[J]. Journal of Southwest China Normal University:Natural Science Edition,2019,44(4):84-92.
[5]孙佳瑞.不同耕作措施对黄土高原旱作农田土壤微生物及酶活性的影响[D].兰州:甘肃农业大学,2014.
Sun J R. Impacts of different tillage measures on soil microorganism and enzymatic activity of dry farmland of the loess plateau[D]. Lanzhou:Gansu Agricultural University, 2014.
[6]罗维.长白山红松阔叶林土壤胞外酶活性对增氮减水的响应[D].哈尔滨:黑龙江大学,2018.
Luo W. Responses of soil extracellular enzyme activity to nitrogen increase and water reduction in Korean pine broad-leaved forest in Changbai Mountain[D]. Harbin:Helongjiang University, 2018.
[7]关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.
Guan S Y. Soil enzymes and their research methods[M]. Beijing:China Agriculture Press, 1986.
[8]Park J, Kim T, Moon M, et al. Effects of thinning intensities on tree water use, growth, and resultant water use efficiency of 50-year-old Pinus koraiensis forest over four years[J]. Forest Ecology and Management, 2018,408:121-128.
[9]孙千惠,吴霞,王媚臻,等.林分密度对马尾松林林下物种多样性和土壤理化性质的影响[J].应用生态学报,2018,29(3):732-738.
Sun Q H, Wu X, Wang M Z, et al. Effects of stand density on understory species diversity and soil physicochemical properties of Pinus massoniana plantation[J]. Chinese Journal of Applied Ecology, 2018,29(3):732-738.
[10]Zhou L L, Cai L P, He Z M, et al. Thinning increases understory diversity and biomass, and improves soil properties without decreasing growth of Chinese fir in Southern China[J]. Environmental Science and Pollution Research International, 2016,23(23):24135-24150.
[11]Wang C Q, Xue L, Dong Y H, et al. Soil organic carbon fractions, C-cycling hydrolytic enzymes, and microbial carbon metabolism in Chinese fir plantations[J]. Science of the Total Environment, 2020,758:143695.
[12]范少辉,赵建诚,苏文会,等.不同密度毛竹林土壤质量综合评价[J].林业科学,2015,51(10):1-9.
Fan S H, Zhao J C, Su W H, et al. Comprehensive evaluation of soil quality in Phyllostachys edulis stands of different stocking stocking densities[J]. Scientia Silvae Sinicae, 2015,51(10):1-9.
[13]向玫.不同林分密度对云杉人工林生长及土壤理化性质的影响[J].安徽林业科技,2022,48(1):25-27.
Xiang M. Effects of stand densities on the growth and soil physicochemical properties of Picea asperata plantations[J]. Anhui Forestry Science and Technology, 2022,48(1):25-27.
[14]赵汝东,樊剑波,何园球,等.林分密度对马尾松林下土壤养分及酶活性的影响[J].土壤,2012,44(2):297-301.
Zhao R D, Fan J B, He Y Q, et al. Effects of stand density on soil nutrients and enzyme activities in Pinus massoniana plantation[J]. Soils, 2012,44(2):297-301.
[15]章广琦,张萍,陈云明,等.黄土丘陵区刺槐与油松人工林生态系统生态化学计量特征[J].生态学报,2018,38(4):1328-1336.
Zhang G Q, Zhang P, Chen Y M, et al. Stoichiometric characteristics of Robinia pseudoacacia and Pinus tabuliformis plantation ecosystems in the Loess hilly-gully region, China[J]. Acta Ecologica Sinica, 2018,38(4):1328-1336.
[16]马亚峰,侯银,张焕朝.杨树不同林分密度和林分结构对土壤理化性质的影响[J].江苏农业科学,2018,46(22):131-136.
Ma Y F, Hou Y, Zhang H C. Effects of different stand structures of poplar on soil physical and chemical properties[J]. Jiangsu Agricultural Sciences, 2018,46(22):131-136.
[17]赵陟峰.半干旱黄土区不同密度刺槐林生态效益研究[D].北京:北京林业大学,2009.
Zhao Z F. Study on the ecological benefits of black locust plantation in hilly and gully regions on Loess Plateau of semi-arid area[D]. Beijing:Beijing Forestry University, 2009.
[18]韦景树,李宗善,冯晓玙,等.黄土高原人工刺槐林生长衰退的生态生理机制[J].应用生态学报,2018,29(7):2433-2444.
Wei J S, Li Z S, Feng X Y, et al. Ecological and physiological mechanisms of growth decline of Robinia pseudoacacia plantations in the Loess Plateau of China:A review[J]. Chinese Journal of Applied Ecology, 2018,29(7):2433-2444.
[19]Bao S D. Soil and agricultural chemistry analysis[R]. Agriculture Publication, 2000,355-356.
[20]葛晓改.三峡库区马尾松林凋落物分解及对土壤碳库动态的影响研究[D].北京:中国林业科学研究院,2012.
Ge X G. The influence of litter decomposition on soil carbon pools dynamics of Pinus Massoniana stands in Three Gorges reservoir area[D]. Beijing:Chinese Academy of Forestry, 2012.
[21]葛晓改,肖文发,曾立雄,等.三峡库区马尾松林土壤-凋落物层酶活性对凋落物分解的影响[J].生态学报,2014,34(9):2228-2237.
Ge X G, Xiao W F, Zeng L X, et al. Effect of soil-litter layer enzyme activities on litter decomposition in Pinus massoniana plantation in Three Gorges Reservoir Area[J]. Acta Ecologica Sinica, 2014,34(9):2228-2237.
[22]Lucas-Borja M E, Hedo J, Cerdá A, et al. Unravelling the importance of forest age stand and forest structure driving microbiological soil properties, enzymatic activities and soil nutrients content in Mediterranean Spanish black pine(Pinus nigra Ar. ssp. salzmannii)Forest[J]. Science of the Total Environment, 2016,562:145-154.
[23]Enrique A G, Bruno C, Christopher A, et al. Effects of nitrogen availability on microbial activities, densities and functional diversities involved in the degradation of a Mediterranean evergreen oak litter(Quercus ilex L.)[J]. Soil Biology and Biochemistry, 2008,40(7):1654-1661.
[24]解梦怡,冯秀秀,马寰菲,等.秦岭锐齿栎林土壤酶活性与化学计量比变化特征及其影响因素[J].植物生态学报,2020,44(8):885-894.
Xie M Y, Feng X X, Ma H F, et al. Characteristics of soil enzyme activities and stoichiometry and its influencing factors in Quercus aliena var. acuteserrata forests in the Qinling Mountains[J]. Chinese Journal of Plant Ecology, 2020,44(8):885-894.
[25]Chen H, Li D J, Xiao K C, et al. Soil microbial processes and resource limitation in Karst and non-Karst forests[J]. Functional Ecology, 2018,32(5):1400-1409.
[26]Allison S D, Vitousek P M. Responses of extracellular enzymes to simple and complex nutrient inputs[J]. Soil Biology and Biochemistry, 2005,37(5):937-944.
[27]Thompson J, Brokaw N, Zimmerman J K, et al. Land use history, environment, and tree composition in a tropical forest[J]. Ecological Applications, 2002,12(5):1344.
[28]Domeignoz-Horta L A, Pold G, Liu X J A, et al. Microbial diversity drives carbon use efficiency in a model soil[J]. Nature Communications, 2020,11(1):3684.
[29]Cui Y X, Fang L C, Guo X B, et al. Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, China[J]. Soil Biology and Biochemistry, 2018,116:11-21.
[30]刘冰燕,陈云明,曹扬.渭北黄土区刺槐人工林氮、磷生态化学计量特征[J].西北林学院学报,2016,31(1):1-6,14.
Liu B Y, Chen Y M, Cao Y. Nitrogen and phosphorus stoichiometry characteristics of Robinia pseudoacacia plantation in Weibei Loess Plateau Region[J]. Journal of Northwest Forestry University, 2016,31(1):1-6,14.
Similar References:

Memo

-

Last Update: 2024-08-10

Online:314       Total Traffic Statistics:27135054

Website Copyright: Research of Soil and Water Conservation Shaanxi ICP No.11014090-10
Tel: 029-87012705 Address: Editorial Department of Research of Soil and Water Conservation, No. 26, Xinong Road, Yangling, Shaanxi Postcode: 712100