[1]LIU Qingyi,WANG Lei,SHI Jingpan,et al.Effects of Different Vegetation Types on Soil Nitrogen Fractions and Enzyme Activity in Riparian Zones of Plain Sandy Area[J].Research of Soil and Water Conservation,2023,30(05):85-91.[doi:10.13869/j.cnki.rswc.2023.05.031.]
Copy

Effects of Different Vegetation Types on Soil Nitrogen Fractions and Enzyme Activity in Riparian Zones of Plain Sandy Area

References:
[1] Hale R, Reich P, Daniel T, et al. Assessing changes in structural vegetation and soil properties following riparian restoration [J]. Agriculture Ecosystems & Environment, 2018,252:22-29.
[2] 张灿强,张彪,杨艳刚,等.太湖上游西苕溪近岸森林土壤氮磷养分差异特征[J].水土保持学报,2011,25(5):53-58.
[3] Baskerville M, Reddy N, Ofosu E, et al. Vegetation type does not affect nitrous oxide emissions from riparian zones in agricultural landscapes [J]. Environmental Management, 2021,67(2):371-383.
[4] Pinay G, Bernal S, Abbott B W, et al. Riparian corridors:A new conceptual framework for assessing nitrogen buffering across biomes [J]. Frontiers in Environmental Science, 2018,6,Doi:org/10.3389/fenvs.2018.00047.
[5] Prescott C E, Preston C M. Nitrogen mineralization and decomposition in forest floors in adjacent plantations of western red cedar, western hemlock, and Douglas-fir [J]. Canadian Journal of Forest Research, 1994,24(12):2424-2431.
[6] 杨传宝,倪惠菁,苏文会,等.经营措施对毛竹林土壤不同组分有机碳、氮及化学结构的影响[J].应用生态学报,2020,31(1):25-34.
[7] Zhang Q, Zhang D, Wu J, et al. Soil nitrogen-hydrolyzing enzyme activity and stoichiometry following a subtropical land use change [J]. Land Degradation & Development, 2021,32(15):4277-4287.
[8] Omidvar N, Xu Z, Nguyen T, et al. A global meta-analysis shows soil nitrogen pool increases after revegetation of riparian zones [J]. Journal of Soils and Sediments, 2021,21(2):665-677.
[9] Weintraub S R, Brooks P D, Bowen G J. Interactive effects of vegetation type and topographic position on nitrogen availability and loss in a temperate montane ecosystem [J]. Ecosystems, 2017,20(6):1073-1088.
[10] Wang Q K, Wang S L. Soil microbial properties and nutrients in pure and mixed Chinese fir plantations [J]. Journal of Forestry Research, 2008,19(2):131-135.
[11] 孙瑞莲,赵秉强,朱鲁生,等.长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用[J].植物营养与肥料学报,2003,9(4):406-410.
[12] 周礼恺.土壤的酶活性[J].土壤学进展,1980,8(4):9-15.
[13] 宋思意,吕思扬,邱岭军,等.华西雨屏区常绿阔叶林不同深度土壤氮矿化及相关土壤酶活性对模拟氮沉降的响应[J].生态学报,2022,42(22):9045-9056.
[14] 弓文艳,陈丽华,郑学良.基于不同林分类型下土壤碳氮储量垂直分布[J].水土保持学报,2019,33(1):152-157,164.
[15] 徐国荣,马维伟,宋良翠,等.植被不同退化状态下尕海湿地土壤氮含量及酶活性特征[J].生态学报,2020,40(24):8917-8927.
[16] Chen D, Saleem M, Cheng J, et al. Effects of aridity on soil microbial communities and functions across soil depths on the Mongolian Plateau [J]. Functional Ecology, 2019,33:1561-1571.
[17] 金兆森,陶涛.江苏省平原沙土地区水土保持措施及其作用[J].水土保持研究,2005,12(5):119-121.
[18] 黄明逸,朱成立,韩以振,等.江苏省黄河故道沙土区植被措施因子试验分析[J].水土保持研究,2017,24(1):140-144.
[19] 徐蛟,王良杰.江苏省平原沙土区河道生态提升建设探索[J].中国水利,2020(23):42-43.
[20] 全国土壤普查办公室.中国土种志[M].北京:中国农业出版社,1993.
[21] 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
[22] 关松荫.土壤酶及其研究法[M].北京:中国农业出版社,1986.
[23] 全国土壤普查办公室.中国土壤普查技术[M].北京:中国农业出版社,1992.
[24] 惠昊,关庆伟,王亚茹,等.不同森林经营模式对土壤氮含量及酶活性的影响[J].南京林业大学学报:自然科学版,2021,45(4):151-158.
[25] 王娟娟,朱莎,靳士科,等.上海市3种森林类型土壤微生物生物量碳和氮的时空格局[J].生态与农村环境学报,2016,32(4):615-621.
[26] Chen X L, Chen, H Y H, et al. Negative to positive shifts in diversity effects on soil nitrogen over time [J]. Nature Sustainability, 2020,4(3):225-234.
[27] Liu R, Zhou X, Wang J, et al. Differential magnitude of rhizosphere effects on soil aggregation at three stages of subtropical secondary forest successions [J]. Plant and Soil, 2019,436:365-380.
[28] 谢君毅,徐侠,蔡斌,等.“碳中和”背景下碳输入方式对森林土壤活性氮库及氮循环的影响[J].南京林业大学学报:自然科学版,2022,46(2):1-11.
[29] 谷晓楠,贺红士,陶岩,等.长白山土壤微生物群落结构及酶活性随海拔的分布特征与影响因子[J].生态学报,2017,37(24):8374-8384.
[30] 闫加亮,范志平,孙学凯,等.小流域内植被类型对土壤NO-3/NH+4空间变化的影响[J].生态学杂志,2012,31(8):2044-2049.
[31] 董敏慧,张良成,文丽,等.松树—樟树混交林、纯林土壤微生物量碳、氮及多样性特征研究[J].中南林业科技大学学报,2017,37(11):146-153.
[32] 张贾宇,佘婷,鄂晓伟,等.杨树人工林幼林阶段林下植被管理对土壤微生物生物量碳、氮酶活性的影响[J].生态学报,2021,41(24):9898-9909.
[33] Heuck C, Weig A, Spohn M. Soil microbial biomass C:N:P stoichiometry and microbial use of organic phosphorus [J]. Soil Biology and Biochemistry, 2015,85:119-129.
[34] 胡宗达,刘世荣,罗明霞,等.川西亚高山不同演替阶段天然次生林土壤碳氮含量及酶活性特征[J].植物生态学报,2020,44(9):973-985.
[35] 罗琰,苏德荣,吕世海,等.辉河湿地河岸带土壤养分与酶活性特征及相关性研究[J].土壤,2017,49(1):203-207.
[36] Lucas-Borja M E, Delgado-Baquerizo M. Plant diversity and soil stoichiometry regulates the changes in multifunctionality during pine temperate forest secondary succession [J]. Science of the Total Environment, 2019,697:134204.
[37] 卢虎,姚拓,李建宏,等.高寒地区不同退化草地植被和土壤微生物特性及其相关性研究[J].草业学报,2015,24(5):34-43.
[38] Clemmensen K E, Bahr A, Ovaskainen O, et al. Roots and Associated Fungi Drive Long-Term Carbon Sequestration in Boreal Forest [J]. Science, 2013,339(6127):1615-1618.
Similar References:

Memo

-

Last Update: 2023-08-10

Online:10745       Total Traffic Statistics:27379772

Website Copyright: Research of Soil and Water Conservation Shaanxi ICP No.11014090-10
Tel: 029-87012705 Address: Editorial Department of Research of Soil and Water Conservation, No. 26, Xinong Road, Yangling, Shaanxi Postcode: 712100