[1]DING Xiaotong,SUN Wenyi,MU Xingmin,et al.Application and Accuracy Evaluation of Multi-source Land Use/Cover Products on the Loess Plateau[J].Research of Soil and Water Conservation,2023,30(02):201-210.[doi:10.13869/j.cnki.rswc.2023.02.001]
Copy

Application and Accuracy Evaluation of Multi-source Land Use/Cover Products on the Loess Plateau

References:
[1] Turner B, Skole D L, Sanderson S, et al. Land-use and land-cover change: Science/research plan[J]. Global Change Report(Sweden),1995,43:669-679.
[2] 李秀彬.全球变化研究的核心领域:土地利用/土地覆被变化的国际研究动向[J].地理学报,1996,51(6):553-558.
[3] 刘纪远,邵全琴,延晓冬,等.土地利用变化影响气候变化的生物地球物理机制[J].自然杂志,2014,36(5):356-363.
[4] Myneni R B, Ramakrishna R, Nemani R, et al. Estimation of global leaf area index and absorbed par using radiative transfer models[J]. Ieee Transactions on Geoscience & Remote Sensing, 2002,35(6):1380-1393.
[5] 刘璐,申双和,杨舒畅.基于MODIS土地覆被数据的江苏省农地景观变化及其驱动因子分析[J].江苏农业科学,2019,47(12):274-280.
[6] 刘纪远,徐新良,邵全琴.近30年来青海三江源地区草地退化的时空特征[J].地理学报,2008,63(4):364-376.
[7] Bartholome E, Belward A S. GLC2000: A new approach to global land cover mappings from earth observation data[J]. International Journal of Remote Sensing, 2005,26:1959-1977.
[8] 吴炳方,苑全治,颜长珍,等.21世纪前十年的中国土地覆盖变化[J].第四纪研究,2014,34(4):723-731.
[9] 杜国明,刘美,孟凡浩,等.基于地学知识的大尺度土地利用/土地覆盖精细化分类方法研究[J].地球信息科学学报,2017,19(1):91-100.
[10] 马京振,孙群,徐立,等. GlobeLand 30和自发地理信息的对比分析研究[J].地球信息科学学报,2018,20(9):1225-1234.
[11] Wang H, Zhao X, Zhang X, et al. Long time series land cover classification in China from 1982 to 2015 based on Bi-LSTM deep learning[J]. Remote Sensing, 2019,11(14):1639.
[12] 刘纪远,匡文慧,张增祥,等.20世纪80年代末以来中国土地利用变化的基本特征与空间格局[J].地理学报,2014,69(1):3-14.
[13] 吴炳方,苑全治,颜长珍,等.21世纪前十年的中国土地覆盖变化[J].第四纪研究,2014,34(4):723-731.
[14] Liu H, Gong P, Wang J, et al. Annual dynamics of global land cover and its long-term changes from 1982 to 2015[J]. Earth System Science Data, 2020,12(2):1217-1243.
[15] Hua T, Zhao W, Liu Y, et al. Spatial consistency assessments for global land-cover datasets: A comparison among GLC2000, CCI LC, MCD12, GLOBCOVER and GLCNMO[J]. Remote Sensing, 2018,10(11):1846.
[16] 高健翎,高云飞,岳本江,等.人民治理黄河70年水土保持效益分析[J].人民黄河,2016,38(12):20-23.
[17] 孙锐,陈少辉,苏红波.2000—2016年黄土高原不同土地覆盖类型植被NDVI时空变化[J].地理科学进展,2019,38(8):1248-1258.
[18] Martinez J M A, Suarez-Seoane S, Calabuig E D L. Modelling the risk of land cover change from environmental and socio-economic drivers in heterogeneous and changing landscapes: The role of uncertainty[J]. Landscape and Urban Planning, 2011,101(2):108-119.
[19] 周志鹏,孙文义,穆兴民,等.2001—2017年黄土高原实际蒸散发的时空格局[J].人民黄河,2019,41(6):76-80,84.
[20] 刘宇,傅伯杰.黄土高原植被覆盖度变化的地形分异及土地利用/覆被变化的影响[J].干旱区地理,2013,36(6):1097-1102.
[21] Fritz S, See L, Rembold F. Comparison of global and regional land cover maps with statistical information for the agricultural domain in Africa[J]. International Journal of Remote Sensing, 2010,31(9):2237-2256.
[22] 陈逸聪,邵华,李杨.多源土地覆被产品在长三角地区的一致性分析与精度评价[J].农业工程学报,2021,37(6):142-150.
[23] Verburg P H, Neumann K, Nol L. Challenges in using land use and land cover data for global change studies[J]. Global Change Biology, 2011,17(2):974-989.
[24] Lizundia-Loiola J, G Oton, Ramo R, et al. A spatio-temporal active-fire clustering approach for global burned area mapping at 250 m from MODIS data[J]. Remote Sensing of Environment, 2020,236(C):111493.
[25] Mas J F, Kolb M, Paegelow M, et al. Inductive pattern-based land use/cover change models: A comparison of four software packages[J]. Environmental Modelling & Software, 2014,51:94-111.
[26] Feng X M, Sun G, Fu B J, et al. Regional effects of vegetation restoration on water yield across the Loess Plateau, China[J]. Hydrology and Earth System Sciences, 2012,16:2617-2628.
[27] 李庆云,吕素冰,刘蕾,等.黄土高原藉河流域近35年来土地利用/覆被变化过程[J].华北水利水电学院学报,2013,34(6):32-35.
[28] 周书贵,邵全琴,曹巍.近20年黄土高原土地利用/覆被变化特征分析[J].地球信息科学学报,2016,18(2):190-199.
Similar References:

Memo

-

Last Update: 2023-03-10

Online:5823       Total Traffic Statistics:27358434

Website Copyright: Research of Soil and Water Conservation Shaanxi ICP No.11014090-10
Tel: 029-87012705 Address: Editorial Department of Research of Soil and Water Conservation, No. 26, Xinong Road, Yangling, Shaanxi Postcode: 712100