[1]LIU Yangyang,REN Hanyu,ZHANG Zhaoying,et al.Temporal and Spatial Dynamic Pattern of Grassland Coverage and Its Influencing Factors in China[J].Research of Soil and Water Conservation,2022,29(02):221-230+242.
Copy

Temporal and Spatial Dynamic Pattern of Grassland Coverage and Its Influencing Factors in China

References:
[1] 李娅丽,汪小钦,陈芸芝,等.福建省地表温度与植被覆盖度的相关性分析[J].地球信息科学学报,2019,21(3):445-454.
[2] 孙睿,刘昌明,朱启疆.黄河流域植被覆盖度动态变化与降水的关系[J].地理学报,2001,56(6):667-672.
[3] 梁玲.植被覆盖度对黄土高原地区环境影响的数值模拟[D].兰州:中国科学院寒区旱区环境与工程研究所,2006.
[4] 李苗苗.植被覆盖度的遥感估算方法研究[D].北京:中国科学院研究生院,2003.
[5] 张斯琦.2000—2015年柴达木盆地植被覆盖度时空变化及其与环境因子的关系[D].石家庄:河北师范大学,2019.
[6] 裴志方,杨武年,吴彬,等.2000—2016年宁夏植被覆盖景观格局遥感动态分析[J].水土保持研究,2018,25(1):215-219.
[7] 赵明伟,王妮,施慧慧,等.2001—2015年中国陆地植被覆盖度时空变化及驱动力分析[J].干旱区地理,2019,42(2):104-111.
[8] Liu Y, Wang Q, Zhang Z, et al. Grassland dynamics in responses to climate variation and human activities in China from 2000 to 2013[J]. Science of the Total Environment, 2019,690:27-39.
[9] Mu S, Zhou S, Chen Y, et al. Assessing the impact of restoration-induced land conversion and management alternatives on net primary productivity in Inner Mongolian grassland, China[J]. Global & Planetary Change, 2013,108(3):29-41.
[10] 刘洋洋,章钊颖,同琳静,等.中国草地净初级生产力时空格局及其影响因素[J].生态学杂志,2020,39(2):349-363.
[11] 刘洋洋,王倩,杨悦,等.黄土高原草地净初级生产力时空动态及其影响因素[J].应用生态学报,2019,30(7):2309-2319.
[12] Liu Y, Yang Y, Wang Q, et al. Evaluating the responses of net primary productivity and carbon use efficiency of global grassland to climate variability along an aridity gradient[J]. Science of the Total Environment, 2019,652:671-682.
[13] Gang C, Zhou W, Wang Z, et al. Comparative assessment of grassland NPP dynamics in response to climate change in China, North America, Europe and Australia from 1981 to 2010[J]. Journal of Agronomy & Crop Science, 2015,201(1):57-68.
[14] Bai Y, Wu J, Xing Q, et al. Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau[J]. Ecology, 2008,89(8):21-40.
[15] Chen Y, Mu S, Sun Z, et al. Grassland carbon sequestration ability in China: A new perspective from terrestrial aridity zones[J]. Rangeland Ecology & Management,2016,69(1):84-94.
[16] Gao Y, Zhou X, Wang Q, et al. Vegetation net primary productivity and its response to climate change during 2001—2008 in the Tibetan Plateau[J]. Science of the Total Environment, 2013,444:356-362.
[17] Chadwick O A, Matson P A. Carbon cycling and soil carbon storage in mesic to Wet Hawaiian Montane Forests[J]. Ecology, 2001,82(11):3182-3196.
[18] 孙海燕,万书波,李林,等.贺兰山西坡不同海拔梯度土壤活性有机碳分布特征及影响因子[J].水土保持学报,2014,28(4):194-199.
[19] 刘洋洋,王倩,杨悦,等.2000—2013年中国植被碳利用效率(CUE)时空变化及其与气象因素的关系[J].水土保持研究,2019,26(5):278-286.
[20] 杨佩国.基于土壤水分分布式动态模型的沙质荒漠化地区生产力估算[D].北京:中国农业大学,2004.
[21] 张俊佩.贵州石漠化地区主要造林树种耐旱特性及适应性评价[D].北京:中国林业科学研究院,2009.
[22] 聂莹莹.阳坡—阴坡生境梯度上植物群落物种多样性和地上生物量的变化特点[D].兰州:兰州大学,2010.
[23] 刘旻霞,刘洋洋,陈世伟,等.青藏高原东缘高寒草甸坡向梯度上植物光合生理特征研究[J].土壤与作物,2015,4(3):10-18.
[24] 刘旻霞.亚高寒草甸不同坡向植物光合生理和叶片形态差异[J].生态学报,2017,37(24):8526-8536.
Similar References:

Memo

-

Last Update: 2022-04-20

Online:5774       Total Traffic Statistics:27356800

Website Copyright: Research of Soil and Water Conservation Shaanxi ICP No.11014090-10
Tel: 029-87012705 Address: Editorial Department of Research of Soil and Water Conservation, No. 26, Xinong Road, Yangling, Shaanxi Postcode: 712100