PDF DownloadHTML ]" id="html" rel="external">HTML
[1]FANG Xin,GUO Xuelian,ZHENG Rongbo,et al.Effect of Difference Grazing Distributions on Soil Ecological Stoichiometric Characteristics in Peatland of Northwest Yunnan Plateau[J].Research of Soil and Water Conservation,2020,27(02):9-14.
Copy

Effect of Difference Grazing Distributions on Soil Ecological Stoichiometric Characteristics in Peatland of Northwest Yunnan Plateau

References:
[1] Deng Q, Cheng X, Hui D, et al. Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in central China[J]. Science of the Total Environment, 2016,541:230-237.
[2] 周正虎,王传宽.微生物对分解底物碳氮磷化学计量的响应和调节机制[J].植物生态学报,2016,40(6):620-630.
[3] Peng X, Wang W. Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China[J]. Soil Biology and Biochemistry, 2016,98:74-84.
[4] Saiya-Cork K, Sinsabaugh R, Zak D. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil[J]. Soil Biology and Biochemistry, 2002,34(9):1309-1315.
[5] Elser J J, Dobberfuhl D R, Mackay N A, et al. Organism size, life history, and N:P stoichiometry: toward a unified view of cellular and ecosystem processes[J]. Bioscience, 1996,46(9):674-684.
[6] Sinsabaugh R L, Hill B H, Shah J J F. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment[J]. Nature, 2009,462(7274).DOI:10.1038/nature08632.
[7] Xu Z, Yu G, Zhang X, et al. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China(NSTEC)[J]. Soil Biology and Biochemistry, 2017,104:152-163.
[8] 肖德荣,田昆,杨宇明,等.高原退化湿地纳帕海植物多样性格局特征及其驱动力[J].生态环境学报,2007,16(2):523-529.
[9] 范桥发,肖德荣,田昆,等.不同放牧对滇西北高原典型湿地土壤碳、氮空间分布的差异影响[J].土壤通报,2014,45(5):1151-1156.
[10] Gorham E. Northern peatlands: role in the carbon cycle and probable responses to climatic warming[J]. Ecological Applications, 1991,1(2):182-195.
[11] 姚茜,田昆,肖德荣,等.纳帕海湿地植物多样性及土壤有机质对猪拱干扰的响应[J].生态学杂志,2015,34(5):1218-1222.
[12] 鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2007.
[13] Huang Z, Wan X, He Z, et al. Soil microbial biomass, community composition and soil nitrogen cycling in relation to tree species in subtropical China[J]. Soil Biology and Biochemistry, 2013,62:68-75.
[14] Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biology and Biochemistry, 1987,19(6):703-707.
[15] Brookes P, Landman A, Pruden G, et al. Chloroform fumigation and the release of soil nitrogen:a rapid direct extraction method to measure microbial biomass nitrogen in soil[J]. Soil Biology and Biochemistry, 1985,17(6):837-842.
[16] Brookes P, Powlson D, Jenkinson D. Measurement of microbial biomass phosphorus in soil[J]. Soil Biology and Biochemistry, 1982,14(4):319-329.
[17] 贾国梅,席颖,许文年,等.三峡库区消落带土壤酶活性特征[J].水土保持研究,2015,22(4):24-28.
[18] 王雪,郭雪莲,郑荣波,等.放牧对滇西北高原纳帕海沼泽化草甸湿地土壤氮转化的影响[J].生态学报,2018,38(7):2308-2314.
[19] 张建文,徐长林,杨海磊,等.高寒草甸冷季放牧对凋落物分解及C, N, P化学计量特征的影响[J].草业科学,2017,34(10):37-44.
[20] Seybold C A, Mersie W, Huang J, et al. Soil redox, pH, temperature, and water-table patterns of a freshwater tidal wetland[J]. Wetlands, 2002,22(1):149-158.
[21] Sun Y, He X Z, Hou F, et al. Grazing increases litter decomposition rate but decreases nitrogen release rate in an alpine meadow[J]. Biogeosciences, 2018,15(13):4233-4243.
[22] Wang X K, Li Z B, Xing Y Y. Effects of mulching and nitrogen on soil temperature, water content, nitrate-N content and maize yield in the Loess Plateau of China[J]. Agricultural Water Management, 2015,161:53-64.
[23] Tian H, Chen G, Zhang C, et al. Pattern and variation of C:N:P ratios in China's soils: a synthesis of observational data[J]. Biogeochemistry, 2010,98(1/3):139-151.
[24] 张仲胜,吕宪国,薛振山,等.中国湿地土壤碳氮磷生态化学计量学特征研究[J].土壤学报,2016,53(5):1160-1169.
[25] Han W, Luo Y, Du G. Effects of clipping on diversity and above-ground biomass associated with soil fertility on an alpine meadow in the eastern region of the Qinghai-Tibetan Plateau[J]. New Zealand Journal of Agricultural Research, 2007,50(3):361-368.
[26] Paul E A. Soil Microbiology, Ecology and Biochemistry[M]. New York. USA: Academic Press, 2014.
[27] 赵先丽,程海涛,吕国红,等.土壤微生物生物量研究进展[J].气象与环境学报,2006,22(4):68-72.
[28] 贝昭贤,张秋芳,郑蔚,等.模拟增温对中亚热带杉木人工林土壤磷有效性的影响[J].生态学报,2018,38(3):1106-1113.
[29] 隋鹏祥,张心昱,温学发,等.耕作方式和秸秆还田对棕壤土壤养分和酶活性的影响[J].生态学杂志,2016,35(8):2038-2045.
[30] Vitousek P M, Porder S, Houlton B Z, et al. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions[J]. Ecological Applications, 2010,20(1):5-15.
[31] Anderson T-H, Domsch K H. Ratios of microbial biomass carbon to total organic carbon in arable soils[J]. Soil Biology and Biochemistry, 1989,21(4):471-479.
[32] Zhao F, Ren C, Han X, et al. Changes of soil microbial and enzyme activities are linked to soil C, N and P stoichiometry in afforested ecosystems[J]. Forest Ecology and Management, 2018,427:289-295.
Similar References:

Memo

-

Last Update: 2020-02-25

Online:5825       Total Traffic Statistics:27357642

Website Copyright: Research of Soil and Water Conservation Shaanxi ICP No.11014090-10
Tel: 029-87012705 Address: Editorial Department of Research of Soil and Water Conservation, No. 26, Xinong Road, Yangling, Shaanxi Postcode: 712100