PDF DownloadHTML ]" id="html" rel="external">HTML
[1]WANG Yun,ZHAO Pengxiang.Effect of Land Use Types on Stability of Soil Aggregates, Soil Organic Carbon Fractions and Soil Respiration in Northern China[J].Research of Soil and Water Conservation,2020,27(01):59-65.
Copy

Effect of Land Use Types on Stability of Soil Aggregates, Soil Organic Carbon Fractions and Soil Respiration in Northern China

References:
[1] Carey J C, Tang J, Templer P H, et al. Temperature response of soil respiration largely unaltered with experimental warming[J]. Proceedings of the National Academy of Sciences, 2016,113(48):13797-13802.
[2] Bond-Lamberty B, Bailey V L, Chen M, et al. Globally rising soil heterotrophic respiration over recent decades[J]. Nature, 2018,560(7716):80-83.
[3] Chen J, Luo Y, Li J, et al. Costimulation of soil glycosidase activity and soil respiration by nitrogen addition[J]. Global Change Biology, 2017,23(3):1328-1337.
[4] Hawkes C V, Waring B G, Rocca J D, et al. Historical climate controls soil respiration responses to current soil moisture[J]. Proceedings of the National Academy of Sciences, 2017,114(24):6322-6327.
[5] Pries C E H, Schuur E A G, Natali S M, et al. Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra[J]. Nature Climate Change, 2016,6(2):214-218.
[6] Chen D, Li J, Lan Z, et al. Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment[J]. Functional Ecology, 2016,30(4):658-669.
[7] Hashimoto S, Carvalhais N, Ito A, et al. Global spatiotemporal distribution of soil respiration modeled using a global database[J]. Biogeosciences, 2015,12(13):4121-4132.
[8] Hursh A, Ballantyne A, Cooper L, et al. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale[J]. Global Change Biology, 2017,23(5):2090-2103.
[9] Liu L, Wang X, Lajeunesse M J, et al. A cross-biome synthesis of soil respiration and its determinants under simulated precipitation changes[J]. Global Change Biology, 2016,22(4):1394-1405.
[10] 王志强,刘英,杨文亭,等.稻田复种轮作休耕对土壤团聚体分布及稳定性的影响[J].生态学报,2018,55(5):1143-1155.
[11] 钟晓兰,李江涛,李小嘉,等.模拟氮沉降增加条件下土壤团聚体对酶活性的影响[J].生态学报,2015,35(5):1422-1433.
[12] 朱姝,窦森,关松,等.秸秆深还对土壤团聚体中胡敏素结构特征的影响[J].土壤学报,2016,53(1):127-136.
[13] 邱晓蕾,宗良纲,刘一凡,等.不同种植模式对土壤团聚体及有机碳组分的影响[J].环境科学,2015,36(3):1045-1052.
[14] 杨宁,邹冬生,付美云,等.紫色土丘陵坡地恢复中土壤团聚体特征及其与土壤性质的关系[J].生态学杂志,2016,35(9):2361-2368.
[15] 王甜,徐姗,赵梦颖,等.内蒙古不同类型草原土壤团聚体含量的分配及其稳定性[J].植物生态学报,2017,41(11):1168-1176.
[16] 孙娇,赵发珠,韩新辉,等.不同林龄刺槐林土壤团聚体化学计量特征及其与土壤养分的关系[J].生态学报,2016,36(21):6879-6888.
[17] 王甜,徐姗,赵梦颖,等.内蒙古不同类型草原土壤团聚体含量的分配及其稳定性[J].植物生态学报,2017,41(11):1168-1176.
[18] 毛霞丽,陆扣萍,何丽芝,等.长期施肥对浙江稻田土壤团聚体及其有机碳分布的影响[J].土壤学报,2015,52(4):828-838.
[19] 朱姝,窦森,陈丽珍.秸秆深还对土壤团聚体中胡敏酸结构特征的影响[J].土壤学报,2015,52(4):747-758.
[20] 杨飞霞,曹广超,于东升,等.引黄灌溉耕作对土壤团聚体有机碳的影响[J].水土保持学报,2018,32(4):190-196.
[21] 李玮,郑子成,李廷轩.不同植茶年限土壤团聚体碳氮磷生态化学计量学特征[J].应用生态学报,2015,26(1):9-16.
[22] 余林,徐海宁,肖复明,等.不同类型毛竹林土壤团聚体有机碳特征研究[J].江西农业大学学报,2017,39(4):713-720.
[23] 黄天颖,高唤唤,康宏樟.黄浦江上游水源涵养林土壤团聚体组成及其碳,氮分布特征[J].上海交通大学学报》(农业科学版),2017,6(3):1-7.
[24] 褚冰杰,余光辉,刘飞飞,等.土壤微团聚体中矿物—有机复合体特征[J].土壤学报,2017,54(6):1451-1458.
[25] 赵然然,张志国,李晓军,等.基于粒度的土壤团聚体中砷的形态分布特征[J].生态环境学报,2016,25(2):327-332.
[26] 李景,吴会军,武雪萍,等.长期保护性耕作提高土壤大团聚体含量及团聚体有机碳的作用[J].植物营养与肥料学报,2015,21(2):378-386.
[27] 张翰林,郑宪清,何七勇,等.不同秸秆还田年限对稻麦轮作土壤团聚体和有机碳的影响[J].水土保持学报,2016,30(4):216-220.
Similar References:

Memo

-

Last Update: 2020-02-25

Online:11018       Total Traffic Statistics:27391552

Website Copyright: Research of Soil and Water Conservation Shaanxi ICP No.11014090-10
Tel: 029-87012705 Address: Editorial Department of Research of Soil and Water Conservation, No. 26, Xinong Road, Yangling, Shaanxi Postcode: 712100