[1]HAN Ling,ZHANG Tingyu,ZHANG Heng.Landslide Susceptibility Mapping Based on IOE and SVM Model in Fugu Town[J].Research of Soil and Water Conservation,2019,26(03):367-372.
Copy

Landslide Susceptibility Mapping Based on IOE and SVM Model in Fugu Town

References:
[1] 杜玉寒.2017全国自然灾害基本情况[EB/OL].http://www.jianzai.gov.cn/zqtj/1148.jhtml.
[2] Shahabi H, Hashim M, Ahmad B B, et al. Remote sensing and GIS-based landslide susceptibility mapping using frequency ratio, logistic regression, and fuzzy logic methods at the central Zab basin, Iran[J]. Environmental Earth Sciences, 2015,73(12):8647-8668.
[3] 李郎平,兰恒星,郭长宝,等.基于改进频率比法的川藏铁路沿线及邻区地质灾害易发性分区评价[J].现代地质,2017,31(5):911-929.
[4] Pourghasemi, Hamid Reza, Mohammadi, et al. Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran[J]. Arabian Journal of Geosciences, 2013,6(7):2351-2365.
[5] 阮沈勇,黄润秋.基于GIS的信息量法模型在地质灾害危险性区划中的应用[J].成都理工大学学报:自然科学版,2001,28(1):89-92.
[6] 谭玉敏,郭栋,白冰心,等.基于信息量模型的涪陵区地质灾害易发性评价[J].地球信息科学学报,2015,17(12):1554-1562.
[7] 王夏林,严宝文.基于熵权的可拓理论在地灾危险性评价中的应用[J].人民长江,2012,43(21):74-78.
[8] Chen W, Chai H, Sun X, et al. A GIS-based comparative study of frequency ratio, statistical index and weights-of-evidence models in landslide susceptibility mapping[J]. Arabian Journal of Geosciences, 2016,9(3):204-220.
[9] Mandal S, Mandal K. Modeling and mapping landslide susceptibility zones using GIS based multivariate binary logistic regression(LR)model in the Rorachu river basin of eastern Sikkim Himalaya, India[J]. Modeling Earth Systems & Environment, 2018,4(1):69-88.
[10] Yilmaz I. A case study from Koyulhisar(Sivas-Turkey)for landslide susceptibility mapping by artificial neural networks[J]. Bulletin of Engineering Geology & the Environment, 2009,68(3):297-306.
[11] 姜琪文,许强,何政伟.基于SVM多类分类的滑坡区域危险性评价方法研究[J].地质灾害与环境保护,2005,16(3):328-330.
[12] Yao X, Tham L G, Dai F C. Landslide susceptibility mapping based on Support Vector Machine:A case study on natural slopes of Hong Kong, China[J]. Geomorphology, 2008,101(4):0-582.
[13] Pradhan B, Pourghasemi H R, Jirandeh A G, et al. Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran[J]. Journal of Earth System Science, 2013,122(2):349-369.
[14] 陕西省地质矿产局.陕西省区域地质志[M].北京:地质出版社,1989.
[15] 尹星星.基于熵值法新疆循环经济发展综合评价分析[J].再生资源与循环经济,2014,7(7):15-18.
[16] Devkota K C, Regmi A D, Pourghasemi H R, et al. Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya[J]. Natural Hazards, 2013, 65(1):135-165.
[17] 许冲,徐锡伟.基于不同核函数的2010年玉树地震滑坡空间预测模型研究[J].地球物理学报,2012,55(9):2994-3005.
[18] Dai F C, Lee C F, Ngai Y Y. Landslide risk assessment and management:An overview[J]. Engineering Geology, 2002,64(1):65-87.
[19] 李明,王伟,张超.基于ArcGIS信息量模型的神农溪流域地质灾害易发性区划[J].安全与环境工程,2013,20(2):46-52.
[20] Bai S B, Jian W, Zhou P G, et al. GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China[J]. Geomorphology, 2010,115(1):23-31.
Similar References:

Memo

-

Last Update: 1900-01-01

Online:5852       Total Traffic Statistics:27359352

Website Copyright: Research of Soil and Water Conservation Shaanxi ICP No.11014090-10
Tel: 029-87012705 Address: Editorial Department of Research of Soil and Water Conservation, No. 26, Xinong Road, Yangling, Shaanxi Postcode: 712100