[1]Tian Xin,Sa Chula,Meng Fanhao,et al.Analysis of spatiotemporal evolution characteristics of freeze-thaw state of surface soil in Inner Mongolia over the past 40 years[J].Research of Soil and Water Conservation,2025,32(01):148-159.[doi:10.13869/j.cnki.rswc.2025.01.010]
Copy

Analysis of spatiotemporal evolution characteristics of freeze-thaw state of surface soil in Inner Mongolia over the past 40 years

References:
[1]周幼吾.中国冻土[M].北京:科学出版社,2000.
Zhou Y W. Geocryology in China[M]. Beijing:Science Press, 2000.
[2]钟歆玥,康世昌,郭万钦,等.最近十多年来冰冻圈加速萎缩:IPCC第六次评估报告之冰冻圈变化解读[J].冰川冻土,2022,44(3):946-953.
Zhong X Y, Kang S C, Guo W Q, et al. The rapidly shrinking cryopshere in the past decade:an interpretation of cryospheric changes from IPCC WGI Sixth Assessment Report[J]. Journal of Glaciology and Geocryology, 2022,44(3):946-953.
[3]王国亚,毛炜峄,贺斌,等.新疆阿勒泰地区积雪变化特征及其对冻土的影响[J].冰川冻土,2012,34(6):1293-1300.
Wang G Y, Mao W Y, He B, et al. Changes in Snow Covers during 1961-2011 and Its Effects on Frozen Ground in Altay Region, Xinjiang[J]. Journal of Glaciology and Geocryology, 2012,34(6):1293-1300.
[4]杨淑华,李韧,吴通华,等.青藏高原近地表土壤不同冻融状态的变化特征及其与气温的关系[J].冰川冻土,2019,41(6):1377-1387.
Yang S H, Li R, Wu T H, et al. The variation characteristics of different freeze-thaw status in the near surface soil and the relationship with temperature over the Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2019,41(6):1377-1387.
[5]Hu J Y, Wu Y P, Zhao W Z, et al. Assessment and projection of ground freezing-thawing responses to climate change in the Upper Heihe River Basin, Northwest China[J]. Journal of Hydrology:Regional Studies, 2022,42:101137.
[6]Shi Y Y, Niu F J, Jin H J, et al. Evaluation and prediction of engineering construction suitability in the China-Mongolia Russia economic corridor[J]. Advances in Climate Change Research, 2023,14(2):166-178.
[7]邵艳莹,吴秀芹,张宇清,等.内蒙古地区植被覆盖变化及其对水热条件的响应[J].北京林业大学学报,2018,40(4):33-42.
Shao Y Y, Wu X Q, Zhang Y Q, et al. Response of vegetation coverage to hydro-thermal change in Inner Mongolia of northern China[J]. Journal of Beijing Forestry University, 2018,40(4):33-42.
[8]毕哲睿,萨楚拉,刘桂香.1982—2015年内蒙古雪深时空变化遥感分析[J].草原与草业,2019,31(4):12-18.
Bi Z R, Sa C L, Liu G X. Remote Sensing Analysis of Temporal and Spatial Changes of Snow Depth in Inner Mongolia from 1982 to 2015[J]. Grassland and Prataculture, 2019,31(4):12-18.
[9]Zhang G F, Nan Z T, Zhao L, et al. Qinghai-Tibet Plateau wetting reduces permafrost thermal responses to climate warming[J]. Earth and Planetary Science Letters, 2021,562:116858.
[10]任喜珍.积雪消融对土壤水热状况的影响研究[D].呼和浩特:内蒙古农业大学,2010.
Ren X Z. Study on the Effect of Snow Melt on the Soil Water Content and Temperature[D]. Hohhot:Inner Mongolia Agricultural University, 2010.
[11]胡越中,王广军,杜海波,等.北麓河流域不同植被覆盖条件下土壤冻融过程中地表土壤含水量变化[J].冰川冻土,2022,44(6):1925-1934.
Hu Y Z, Wang G J, Du H B, et al. Changes in surface soil mositure during freeze-thaw process under different vegetated status using Sentinel-1A in Beiluhe[J]. Journal of Glaciology and Geocryology, 2022,44(6):1925-1934.
[12]Chen X, Jeong S, Park C E, et al. Different responses of surface freeze and thaw phenology changes to warming among Arctic permafrost types[J]. Remote Sensing of Environment, 2022,272:112956.
[13]郭正刚,吴青柏,牛富军.人类工程活动对青藏高原北部多年冻土融化层及其环境的影响[J].应用生态学报,2006,17(11):2136-2140.
Guo Z G, Wu Q B, Niu F J. Effects of human engineering activities on permafrost active layer and its environment in northern Qinghai-Tibetan plateau[J]. Chinese Journal of Applied Ecology, 2006,17(11):2136-2140.
[14]乌日汗.2001-2016年内蒙古植被动态特征及其对气候变化的响应[D].呼和浩特:内蒙古师范大学,2020.
Wu R H. Dynamic Characteristics of Vegetation in Inner Mongolia from 2001 to 2016, and Its Response to Climate Change[D]. Hohhot:Inner Mongolia Normal University, 2020.
[15]王子玉,许端阳,杨华,等.1981—2010年气候变化和人类活动对内蒙古地区植被动态影响的定量研究[J].地理科学进展,2017,36(8):1025-1032.
Wang Z Y, Xu D Y, Yang H, et al. Impacts of climate change and human activities on vegetation dynamics in Inner Mongolia, 1981—2010[J]. Progress in Geography, 2017,36(8):1025-1032.
[16]滑永春,张恒,王冰,等.1982—2015年内蒙古地区NDVI时空变化及驱动力分析[J].西南林业大学学报:自然科学,2021,41(6):175-182.
Hua Y C, Zhang H, Wang B, et al. Temporal and Spatial Variations of NDVI and Its Driving Factors in Inner Mongolia from 1982 to 2015[J]. Journal of Southwest Forestry University:Natural Sciences,2021,41(6):175-182.
[17]Muñoz-Sabater J, Dutra E, Agustí-Panareda A, et al. ERA5-Land:a state-of-the-art global reanalysis dataset for land applications[J]. Earth System Science Data, 2021,13(9):4349-4383.
[18]Ran Y H, Li X, Cheng G D, et al. Distribution of Permafrost in China:an overview of existing permafrost maps[J]. Permafrost and Periglacial Processes, 2012,23(4):322-333.
[19]张昊琛,萨楚拉,孟凡浩,等.内蒙古地表冻融指数动态变化与驱动因素分析[J].干旱区研究,2022,39(6):1996-2008.
Zhang H C, Sa C L, Meng F H, et al. Dynamic changes and driving factors of the surface freeze-thaw index in Inner Mongolia[J]. Arid Zone Research, 2022,39(6):1996-2008.
[20]Yang J, Huang X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021,13(8):3907-3925.
[21]Wang D, Wang A H, Kong X H. Homogenization of the Daily Land Surface Temperature over the Mainland of China from 1960 through 2017[J]. Advances in Atmospheric Sciences, 2021,38(11):1811-1822.
[22]岳书平,闫业超,张树文,等.基于ERA5-LAND的中国东北地区近地表土壤冻融状态时空变化特征[J].地理学报,2021,76(11):2765-2779.
Yue S P, Yan Y C, Zhang S W, et al. Spatiotemporal variations of soil freeze-thaw state in Northeast China based on the ERA5-LAND dataset[J]. Acta Geographica Sinica, 2021,76(11):2765-2779.
[23]Li X, Jin R, Pan X D, et al. Changes in the near-surface soil freeze-thaw cycle on the Qinghai-Tibetan Plateau[J]. International Journal of Applied Earth Observation and Geoinformation, 2012,17:33-42.
[24]林笠,王其兵,张振华,等.温暖化加剧青藏高原高寒草甸土非生长季冻融循环[J].北京大学学报:自然科学版,2017,53(1):171-178.
Lin L, Wang Q B, Zhang Z H, et al. Warming enhances soil freezing and thawing circles in the non-growing season in a Tibetan alpine grassland[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017,53(1):171-178.
[25]王佃来,刘文萍,黄心渊.基于Sen+Mann-Kendall的北京植被变化趋势分析[J].计算机工程与应用,2013,49(5):13-17.
Wang D L, Liu W P, Huang X Y. Trend analysis in vegetation cover in Beijing based on Sen+Mann-Kendall method[J]. Computer Engineering and Applications, 2013,49(5):13-17.
[26]金凯,王飞,韩剑桥,等.1982—2015年中国气候变化和人类活动对植被NDVI变化的影响[J].地理学报,2020,75(5):961-974.
Jin K, Wang F, Han J Q, et al. Contribution of climatic change and human activities to vegetation NDVI change over China during 1982—2015[J]. Acta Geographica Sinica, 2020,75(5):961-974.
[27]杨淑华,吴通华,李韧,等.青藏高原近地表土壤冻融状况的时空变化特征[J].高原气象,2018,37(1):43-53.
Yang S H, Wu T H, Li R, et al. Spatial-temporal changes of the near-surface soil freeze-thaw status over the Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2018,37(1):43-53.
[28]邵婉婉.利用被动微波遥感监测北半球高分辨率土壤冻融变化[D].兰州:兰州大学,2021.
Shao W W. High-resolution near-surface soil freeze/thaw status and changes in northern hemisphere based on passive microwave remote sensing[D]. Lanzhou:Lanzhou University, 2021.
[29]高思如,曾文钊,吴青柏,等.1990—2014年西藏季节冻土最大冻结深度的时空变化[J].冰川冻土,2018,40(2):223-230.
Gao S R, Zeng W Z, Wu Q B, et al. Temporal and spatial variations of the maximum frozen depth of seasonally frozen soil in Tibet from 1990 to 2014[J]. Journal of Glaciology and Geocryology, 2018,40(2):223-230.
[30]王一博,王根绪,常娟.人类活动对青藏高原冻土环境的影响[J].冰川冻土,2004,26(5):523-527.
Wang Y B, Wang G X, Chang J. Impacts of Human Activity on Permafrost Environment of the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2004,26(5):523-527.
Similar References:

Memo

-

Last Update: 2025-01-10

Online:631       Total Traffic Statistics:28357168

Website Copyright: Research of Soil and Water Conservation Shaanxi ICP No.11014090-10
Tel: 029-87012705 Address: Editorial Department of Research of Soil and Water Conservation, No. 26, Xinong Road, Yangling, Shaanxi Postcode: 712100