[1]Pan Wangsheng,Zhao Tianyin,Li Xin,et al.Susceptibility Assessment of Landslide in the Loess Region Based on Multivariate Adaptive Regression Spline[J].Research of Soil and Water Conservation,2024,31(06):271-280.[doi:10.13869/j.cnki.rswc.2024.06.028]
Copy

Susceptibility Assessment of Landslide in the Loess Region Based on Multivariate Adaptive Regression Spline

References:
[1]段宇英,汤军,刘远刚,等.基于随机森林的山西省柳林县黄土滑坡空间敏感性评价[J].地理科学,2022,42(2):343-351.
Duan Y Y, Tang J, Liu Y G, et al. Spatial sensitivity evaluation of loess landslide in Liulin County, Shanxi based on random forest[J]. Scientia Geographica Sinica, 2022,42(2):343-351.
[2]贺倩,汪明,刘凯.基于Logistic回归和MCMC方法评价地震滑坡敏感性[J].水土保持研究,2022,29(3):396-403,410.
He Q, Wang M, Liu K. Assessement on earthquake-triggered landslide susceptibility based on logistic regression and MCMC method[J]. Research of Soil and Water Conservation, 2022,29(3):396-403,410.
[3]Fell R, Corominas J, Bonnard C, et al. Guidelines for landslide susceptibility, hazard and risk zoning for land use planning[J]. Engineering Geology, 2008,102(3/4):85-98.
[4]惠振德,李晓玲,孙虎.陕南山区滑坡发育特征与敏感性分析[J].陕西师范大学学报:自然科学版,1996,24(1):96-101.
Xi Z D, Li X L, Sun H. Characteristics and sensitivity of landslide in mountainous areas of Southern Shaanxi Province[J]. Journal of Shaanxi Normal University: Natural Science Edition, 1996,24(1):96-101.
[5]黄健,贺子城,黄祥,等.基于地貌特征的滑坡堰塞坝形成敏感性研究[J].地质科技通报,2021,40(5):253-262.
Huang J, He Z C, Huang X, et al. Formation sensitivity of landslide dam based on geomorphic characteristics[J]. Bulletin of Geological Science and Technology, 2021,40(5):253-262.
[6]唐川,马国超.基于地貌单元的小区域地质灾害易发性分区方法研究[J].地理科学,2015,35(1):91-98.
Tang C, Ma G C. Small regional geohazards susceptibility mapping based on geomorphic unit[J]. Scientia Geographica Sinica, 2015,35(1):91-98.
[7]尹超,李仲波,张凯,等.基于Inter. iamb-Tabu算法的区域滑坡敏感性评价[J].山地学报,2023,41(4):608-620.
Yin C, Li Z B, Zhang K, et al. Regional landslide susceptibility assessment based on Inter. iamb-Tabu algorithm[J]. Mountain Research, 2023,41(4):608-620.
[8]Aghdam I N, Pradhan B, Panahi M. Landslide susceptibility assessment using a novel hybrid model of statistical bivariate methods(FR and WOE)and adaptive neuro-fuzzy inference system(ANFIS)at southern Zagros Mountains in Iran[J]. Environmental Earth Sciences, 2017,76(6):237.
[9]黄发明,叶舟,姚池,等.滑坡易发性预测不确定性:环境因子不同属性区间划分和不同数据驱动模型的影响[J].地球科学,2020,45(12):4535-4549.
Huang F M, Ye Z, Yao C, et al. Uncertainties of landslide susceptibility prediction: Different attribute interval divisions of environmental factors and different data-based models[J]. Earth Science, 2020,45(12):4535-4549.
[10]苏刚,秦胜伍,乔双双,等.基于Stacking集成学习的泥石流易发性评价:以四川省雅江县为例[J].世界地质,2021,40(1):175-184.
Su G, Qin S W, Qiao S S, et al. Debris flow susceptibility evaluation based on Stacking ensemble learning: A case study in Yajiang, Sichuan Province[J]. Global Geology, 2021,40(1):175-184.
[11]Wolpert D H. Stacked generalization[J]. Neural Networks, 1992,5(2):241-259.
[12]陈宣全,崔宁博,李继平,等.多元自适应回归样条算法模拟川中丘陵区参考作物蒸散量[J].农业工程学报,2019,35(16):152-160.
Chen X Q, Cui N B, Li J P, et al. Simulation of reference crop evapotranspiration in hilly area of central Sichuan based on MARS[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019,35(16):152-160.
[13]赵忠国,张峰,郑江华.多元自适应回归样条法的滑坡敏感性评价[J].武汉大学学报:信息科学版,2021,46(3):442-450.
Zhao Z G, Zhang F, Zheng J H. Evaluation of landslide susceptibility by multiple adaptive regression spline method[J]. Geomatics and Information Science of Wuhan University, 2021,46(3):442-450.
[14]张秀敏,南卓铜,吴吉春,等.基于多元自适应回归样条的青藏高原温泉区域的冻土分布制图[J].冰川冻土,2011,33(5):1088-1097.
Zhang X M, Nan Z T, Wu J C, et al. Modeling permafrost distribution in Wenquan Area over Qinghai-Tibet Plateau by using multivariate adaptive regression splines[J]. Journal of Glaciology and Geocryology, 2011,33(5):1088-1097.
[15]Krzemień A. Fire risk prevention in underground coal gasification(UCG)within active mines: Temperature forecast by means of MARS models[J]. Energy, 2019,170:777-790.
[16]鲍长庚,闫贻鹏,黄一楠,等.基于多元自适应回归样条的光伏并网系统日输出功率预测[J].电力系统保护与控制,2021,49(5):124-131.
Bao C G, Yan Y P, Huang Y N, et al. Forecasting the daily power output of a grid-connected photovoltaic system based on multivariate adaptive regression splines[J]. Power System Protection and Control, 2021,49(5):124-131.
[17]Rezaie-balf M, Naganna S R, Ghaemi A, et al. Wavelet coupled MARS and M5 Model Tree approaches for groundwater level forecasting[J]. Journal of Hydrology, 2017,553:356-373.
[18]仉文岗,洪利,黎泳钦.基于多元自适应回归样条的高维岩土工程问题分析[J].河海大学学报:自然科学版,2019,47(4):359-365.
Zhang W G, Hong L, Li Y Q. Analysis of multi-dimensional geotechnical engineering problems based on multivariate adaptive regression splines[J]. Journal of Hohai University: Natural Sciences, 2019,47(4):359-365.
[19]穆柯,谢婉丽,刘琦琦,等.基于LR-RF模型的滑坡易发性评价:以铜川市耀州区为例[J].灾害学,2022,37(3):212-218.
Mu K, Xie W L, Liu Q Q, et al. Research on landslide susceptibility evaluation based on logistic regression and LR coupling model[J]. Journal of Catastrophology, 2022,37(3):212-218.
[20]延延,杜荣军,严芳.空间分析在铜川市耀州区地质灾害易发性分区中的应用[J].水土保持通报,2010,30(1):146-150.
Yan Y, Du R J, Yan F. Application of spatial analysis in susceptibility regionalization of geological disaster in Yaozhou District of Tongchuan City[J]. Bulletin of Soil and Water Conservation, 2010,30(1):146-150.
[21]孟文强.基于GIS和层次分析法的地质灾害危险性评价研究:以铜川市耀州区为例[D].西安:长安大学,2012.
Meng W Q. Study on Geo-Hazards Risk Evaluation Based on GIS and AHP: Taking Yaozhou District of Tongchuan City for example[D]. Xi'an: Chang'an University, 2012.
[22]Zhu J, Baise L G, Thompson E M. An updated geospatial liquefaction model for global application[J]. Bulletin of the Seismological Society of America, 2017,107(3):1365-1385.
[23]纪德洋,金锋,冬雷,等.基于皮尔逊相关系数的光伏电站数据修复[J].中国电机工程学报,2022,42(4):1514-1523.
Ji D Y, Jin F, Dong L, et al. Data repairing of photovoltaic power plant based on Pearson correlation coefficient[J]. Proceedings of the CSEE, 2022,42(4):1514-1523.
[24]肖霞,伍兴国.线性回归中多重共线性的几何解释[J].统计与决策,2021,37(21):46-51.
Xiao X, Wu X G. Geometric interpretation of multicollinearity in linear regression[J]. Statistics & Decision, 2021,37(21):46-51.
[25]Dar I S, Chand S. Improved heteroscedasticity-consistent ridge estimators for linear regression with multicollinearity[J]. Iranian Journal of Science, 2023,47:1593-1604.
[26]Friedman J H. Multivariate adaptive regression splines[J]. Annals of Statistics, 1991,19(1):1-67.
[27]王洪礼,向建平,葛根.多元自适应样条回归预报浮游植物总量分析[J].海洋技术,2006,25(3):7-9.
Wang H L, Xiang J P, Ge G. The application of multivariate adaptive regression splines in forecast of total number of phytoplankton[J]. Ocean Technology, 2006,25(3):7-9.
[28]Bharadwaj D, Sarkar R. Landslide susceptibility mapping using probabilistic frequency ratio and Shannon entropy for Chamoli, Uttarakhand Himalayas[J]. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2024,48:377-395.
[29]刘月,王宁涛,周超,等.基于ROC曲线与确定性系数法集成模型的三峡库区奉节县滑坡易发性评价[J].安全与环境工程,2020,27(4):61-70.
Liu Y, Wang N T, Zhou C, et al. Evaluation of landslide susceptibility based on ROC and certainty factor method in Fengjie County, Three Gorges Reservoir[J]. Safety and Environmental Engineering, 2020,27(4):61-70.
[30]张帆宇,刘高,谌文武,等.基于多变量统计分析的大型滑坡敏感性评价:以汶川地震影响的陇南地区为例[J].中南大学学报:自然科学版,2012,43(9):3595-3600.
Zhang F Y, Liu G, Chen W W, et al. Large landslide susceptibility assessment by multivariate statistical analysis in the Longnan area affected by the Wenchuan earthquake[J]. Journal of Central South University: Science and Technology, 2012,43(9):3595-3600.
Similar References:

Memo

-

Last Update: 2024-12-10

Online:613       Total Traffic Statistics:28242405

Website Copyright: Research of Soil and Water Conservation Shaanxi ICP No.11014090-10
Tel: 029-87012705 Address: Editorial Department of Research of Soil and Water Conservation, No. 26, Xinong Road, Yangling, Shaanxi Postcode: 712100