[1]Xiao Shengyang,Zhang Lanyue,Chen Jingzhong,et al.Stability of Soil Aggregates and Its Influencing Factors at Different Elevations in Fanjing Mountain[J].Research of Soil and Water Conservation,2024,31(03):160-168.[doi:10.13869/j.cnki.rswc.2024.03.015]
Copy

Stability of Soil Aggregates and Its Influencing Factors at Different Elevations in Fanjing Mountain

References:
[1] 万红云,陈林,庞丹波,等.贺兰山不同海拔土壤酶活性及其化学计量特征[J].应用生态学报,2021,32(9):3045-3052.
Wan H Y, Chen L, Pang D B, et al. Soil enzyme activities and their stoichiometry at different altitudes in Helan Mountains, Northwest China[J]. Chinese Journal of Applied Ecology, 2021,32(9):3045-3052.
[2] Abbas F, Zhu Z L, An S S. Evaluating aggregate stability of soils under different plant species in Ziwuling Mountain area using three renowned methods[J]. Catena, 2021,207:105616.
[3] Zhu G Y, Shangguan Z P, Deng L. Variations in soil aggregate stability due to land use changes from agricultural land on the Loess Plateau, China[J]. Catena, 2021,200:105181.
[4] 刘亚龙,王萍,汪景宽.土壤团聚体的形成和稳定机制:研究进展与展望[J].土壤学报,2023,60(3):627-643.
Liu Y L, Wang P, Wang J K. Formation and stability mechanism of soil aggregates:progress and prospect[J]. Acta Pedologica Sinica, 2023,60(3):627-643.
[5] He X J, Hou E Q, Veen G F, et al. Soil microbial biomass increases along elevational gradients in the tropics and subtropics but not elsewhere[J]. Global Ecology and Biogeography, 2020,29(2):345-354.
[6] Zhu M K, Yang S Q, Ai S H, et al. Artificial soil nutrient, aggregate stability and soil quality index of restored cut slopes along altitude gradient in southwest China[J]. Chemosphere, 2020,246:125687.
[7] Wu M Y, Pang D, Chen L, et al. Chemical composition of soil organic carbon and aggregate stability along an elevation gradient in Helan Mountains, northwest China[J]. Ecological Indicators, 2021,131:108228.
[8] 马寰菲,胡汗,李益,等.秦岭不同海拔土壤团聚体稳定性及其与土壤酶活性的耦合关系[J].环境科学,2021,42(9):4510-4519.
Ma H F, Hu H, Li Y, et al. Stability of soil aggregates at different altitudes in Qinling Mountains and its coupling relationship with soil enzyme activities[J]. Environmental Science, 2021,42(9):4510-4519.
[9] 吕伊娜,熊康宁,容丽,等.梵净山生物生态演化的世界自然遗产价值对比分析[J].世界地理研究,2016,25(5):131-141.
Lv Y N, Xiong K N, Rong L, et al. Comparative analysis of world heritage values on biological and ecological evolution in Fanjingshan Mountain[J]. World Regional Studies, 2016,25(5):131-141.
[10] 周政贤.梵净山研究[M].贵阳:贵州人民出版社,1990.
Zhou Z X. Study on Fanjingshan[M]. Guiyang: Guizhou People's Publishing House, 1990:1-513.
[11] 熊华,于飞,谷晓平,等.梵净山不同森林植被生物量、净生产量、碳储量及空间分布特征[J].生态环境学报,2021,30(2):264-273.
Xiong H, Yu F, Gu X P, et al. Biomass, net production, carbon storage and spatial distrubution features of different forest vegetation in Fanjing Mountains[J]. Ecology and Environmental Sciences, 2021,30(2):264-273.
[12] 李相楹,张维勇,刘峰,等.不同海拔高度下梵净山土壤碳、氮、磷分布特征[J].水土保持研究,2016,23(3):19-24.
Li X Y, Zhang W Y, Liu F, et al. The distribution characteristics of soil carbon, nitrogen and phosphorus at different altitudes in Fanjingshan Mountain[J]. Research of Soil and Water Conservation, 2016,23(3):19-24.
[13] Xie Y G, Zhang L Y, Wang J C, et al. Spatial heterogeneity of soil bacterial community structure and enzyme activity along an altitude gradient in the Fanjingshan area, northeastern Guizhou Province, China[J]. Life, 2022,12(11):1862.
[14] 王鹏举,陈浒,周政,等.梵净山常绿落叶阔叶混交林土壤螨类群落结构研究[J].土壤,2018,50(4):687-695.
Wang P J, Chen H, Zhou Z, et al. Soil mite community structure in mixed evergreen and deciduous broad-leaved forest of Fanjingshan[J]. Soils, 2018,50(4):687-695.
[15] Luo W M, Liu Y Y, Mu G T, et al. Evolution of soil texture in mid-subtropical forests in the past 32 years: taking Fanjing Mountain in southwest China as an example[J]. Tropical Ecology, 2023,64,671-680.
[16] 章明奎,毛霞丽,邱志腾,等.梵净山垂直带土壤的发生学特性与系统分类研究[J].土壤通报,2018,49(4):757-766.
Zhang M K, Mao X L, Qiu Z T, et al. Genetic characteristics and taxonomic classification of vertical Soils in the Fanjingshan Mountain[J]. Chinese Journal of Soil Science, 2018,49(4):757-766.
[17] 国家林业局.森林土壤分析方法[M].北京:中国标准出版社,1999.
StateForestryAdministration. Forestsoilanalysismethod[M]. Beijing:China Standards Press, 1999.
[18] 韩贞贵,周运超,任娇娇,等.马尾松人工林土壤各粒径团聚体湿筛后的有机碳分配[J].生态学报,2021,41(23):9388-9398.
Han Z G, Zhou Y C, Ren J J, et al. Distribution of organic carbon after wet sieving of soil aggregates of various particle sizes in Masson Pine plantation[J]. Acta Ecologica Sinica, 2021,41(23):9388-9398.
[19] Turcotte D L. Fractals and fragmentation[J]. Journal of Geophysical Research:Solid Earth, 1986,91(B2):1921-1926.
[20] Zhang A L, Li X Y, Wu S X, et al. Spatial pattern of C:N:P stoichiometry characteristics of alpine grassland in the Altunshan Nature Reserve at North Qinghai-Tibet Plateau[J]. Catena, 2021,207:105691.
[21] 吴梦瑶,陈林,庞丹波,等.贺兰山不同海拔土壤团聚体碳氮磷含量及其化学计量特征变化[J].应用生态学报,2021,32(4):1241-1249.
Wu M Y, Chen L, Pang D B, et al. Changes of the concentrations and stoichiometry of carbon, nitrogen and phosphorus in soil aggregates along different altitudes of Helan Mountains, Northwest China[J]. Chinese Journal of Applied Ecology, 2021,32(4):1241-1249.
[22] 钟有萍,舒国勇,晏理华.梵净山对局地气候的影响分析[J].贵州气象,2011,35(6):25-28.
Zhong Y P, Shu G Y, Yan L H. Analysis of the influence of Fanjing Mountain on local climate[J]. Journal of Guizhou Meteorology, 2011,35(6):25-28.
[23] Yang X Z, Wei K, Chen Z H, et al. Soil phosphorus composition and phosphatase activities along altitudes of alpine tundra in Changbai Mountains, China[J]. Chinese Geographical Science, 2016,26:90-98.
[24] Merino-Martín L, Stokes A, Gweon H S, et al. Interacting effects of land use type, soil microbes and plant traits on aggregate stability[J]. Soil Biology and Biochemistry, 2020,154:108072.
[25] Novara A, Gristina L, Mantia L T, et al. Carbon dynamics of soil organic matter in bulk soil and aggregate fraction during secondary succession in a Mediterranean environment[J]. Geoderma, 2013,193,213-221.
[26] 丁慧慧,陈文盛,李江荣.季节性冻融对色季拉森林土壤团聚体稳定性的影响[J].水土保持研究,2023,30(1):120-127.
Dian H H, Chen W S, Li J R. Effect of seasonal Freeze-Thaw on the stability of soil aggregates in the forest of Sergyemla Mountain[J]. Research of Soil and Water Conservation, 2023,30(1):120-127.
[27] Wang J Y, Wei H, Huang J, et al. Soil aggregate stability and its response to overland runoff-sediment transport in karst peak-cluster depressions[J]. Journal of Hydrology, 2023,620:129437.
[28] Pan J X, Shi J W, Tian D S, et al. Depth-dependent drivers of soil aggregate carbon across Tibetan alpine grasslands[J]. Science of the Total Environment, 2023,867:161428.
[29] Tisdall J M, Oades J M. Organic matter and water-stable aggregates in soils[J]. Journal of Soil Science, 1982,33(2):141-163.
[30] Wershaw R L, Llaguno E C, Leenheer J A. Mechanism of formation of humus coatings on mineral surfaces 3. Composition of adsorbed organic acids from compost leachate on alumina by solid-state 13C NMR[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1996,108(2/3):213-223.
[31] Wang J Y, Deng Y S, Li D Y, et al. Soil aggregate stability and its response to overland flow in successive Eucalyptus plantations in subtropical China[J]. Science of the Total Environment, 2022,807:151000.
[32] Nguetnkam J P, Dultz S. Soil degradation in Central North Cameroon:Water-dispersible clay in relation to surface charge in Oxisol A and B horizons[J]. Soil and Tillage Research, 2011,113(1):38-47.
[33] Kosmulski M. pH-dependent surface charging and points of zero charge:Ⅲ. Update[J]. Journal of Colloid and Interface Science, 2006,298(2):730-741.
[34] Weng L P, van Riemsdijk W H, Hiemstra T. Humic nanoparticles at the oxide-water interface:Interactions with phosphate ion adsorption[J]. Environmental Science & Technology, 2008,42(23):8747-8752.
Similar References:

Memo

-

Last Update: 2024-04-30

Online:11820       Total Traffic Statistics:27382992

Website Copyright: Research of Soil and Water Conservation Shaanxi ICP No.11014090-10
Tel: 029-87012705 Address: Editorial Department of Research of Soil and Water Conservation, No. 26, Xinong Road, Yangling, Shaanxi Postcode: 712100