[1]LI Yingxue,ZANG Zhenfeng,ZHANG Yu,et al.Changes in Soil Carbon Pool Activity and Distribution of Labile Organic Carbon Composition in Soil Aggregates Following Conversion of Farmland to Grassland on the Loess Plateau[J].Research of Soil and Water Conservation,2023,30(05):241-249.[doi:10.13869/j.cnki.rswc.2023.05.007.]
Copy

Changes in Soil Carbon Pool Activity and Distribution of Labile Organic Carbon Composition in Soil Aggregates Following Conversion of Farmland to Grassland on the Loess Plateau

References:
[1] Six J, Callewaert P, Lenders S, et al. Measuring and understanding carbon storage in afforested soils by physical fractionation [J]. Soil Science Society of America Journal, 2002,66(6):1981-1987.
[2] Mustafa A, Xu M G, Shah S A A, et al. Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of southern China [J]. Journal of Environmental Management, 2020,270:110894.
[3] Rabot E, Wiesmeier M, Schluter S, et al. Soil structure as an indicator of soil functions:A review [J]. Geoderma, 2018,314:122-137.
[4] 刘中良,宇万太.土壤团聚体中有机碳研究进展[J].中国生态农业学报,2011,19(2):447-455.
[5] 潘根兴,陆海飞,李恋卿,等.土壤碳固定与生物活性:面向可持续土壤管理的新前沿[J].地球科学进展,2015,30(8):940-951.
[6] Wilpiszeski R L, Aufrecht J A, Retterer S T, et al. Soil aggregate microbial communities:towards understanding microbiome interactions at biologically relevant scales [J]. Applied and Environmental Microbiology, 2019,85(14):e00324-19.
[7] Kukal S S, Bawa S S. Soil organic carbon stock and fractions in relation to land use and soil depth in the degraded Shiwaliks hills of lower Himalayas [J]. Land Degradation & Development, 2014,25(5):407-416.
[8] Zhong Z K, Wu S J, Lu X Q, et al. Organic carbon, nitrogen accumulation, and soil aggregate dynamics as affected by vegetation restoration patterns in the Loess Plateau of China [J]. Catena, 2021,196:104867.
[9] 靳小莲,赵巍,李梦迪,等.黄土高原退耕还草土壤水分对植物地上部化学计量特征的影响[J].水土保持研究,2022,29(2):57-63.
[10] 胡磊,佘冬立,杨震.晋西北黄土丘陵区小流域土壤团聚体稳定性及其分异特征[J].水土保持研究,2022,29(1):72-77.
[11] 曹培,徐莹,朱杰,等.不同种植模式对稻田土壤活性有机碳组分及产量的短期影响[J].生态学杂志,2019,38(9):2788-2798.
[12] 王琳,李玲玲,高立峰,等.长期保护性耕作对黄绵土总有机碳和易氧化有机碳动态的影响[J].中国生态农业学报,2013,21(9):1057-1063.
[13] 姚旭,景航,梁楚涛,等.人工油松林表层土壤团聚体活性有机碳含量对短期氮添加的响应[J].生态学报,2017,37(20):6724-6731.
[14] 乔赵崇,王炯琪,赵海超,等.种植模式对冀西北坝上土壤活性有机质和碳库管理指数的影响[J].生态环境学报,2020,29(6):1139-1146.
[15] Logninow W, Wisniewski W, Gonet S S, et al. Changes in soil carbon during the establishment of a hardwood plantation in subtropical Australia [J]. Polish Journal of Soil Science, 1987,20:47-52.
[16] Ma Y, Cheng X Q, Kang F F, et al. Effects of thinning on soil aggregation, organic carbon and labile carbon component distribution in Larix principis-rupprechtii plantations in North China [J]. Ecological Indicators, 2022,139:108873.
[17] 潘英杰,何志瑞,刘玉林,等.黄土高原天然次生林植被演替过程中土壤团聚体有机碳动态变化[J].生态学报,2021,41(13):5195-5203.
[18] Elliott E T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils [J]. Soil Science Society of America Journal, 1986,50(3):627-633.
[19] Kemper W D. Aggregate stability and size distributions [M]. Madison:American Society of Agronomy, 1986.
[20] 鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000.
[21] Jones D L, Willett V B. Experimental evaluation of methods to quantify dissolved organic nitrogen(DON)and dissolved organic carbon(DOC)in soil [J]. Soil Biology & Biochemistry, 2006,38(5):991-999.
[22] Bai Y F, Cotrufo M F. Grassland soil carbon sequestration:Current understanding, challenges, and solutions [J]. Science, 2022,377(6606):603-608.
[23] 王兴,钟泽坤,张欣怡,等.长期撂荒恢复土壤团聚体组成与有机碳分布关系[J].环境科学,2020,41(5):2416-2424.
[24] 李柏桥,付玉,李光录,等.退耕年限与方式对土壤团聚体稳定性及有机碳分布的影响[J].干旱地区农业研究,2017,35(3):238-244.
[25] 何绍浪,黄尚书,钟义军,等.耕作深度对红壤坡耕地土壤水稳性团聚体特征的影响[J].水土保持研究,2019,26(6):127-132.
[26] Cheng X Q, Han H R, Zhu J, et al. Forest thinning and organic matter manipulation drives changes in soil respiration in a Larix principis-rupprechtii plantation in China [J]. Soil & Tillage Research, 2021,211:104996.
[27] 梁彩群,刘国彬,王国梁,等.黄土高原人工刺槐林土壤团聚体中不同活性有机碳从南到北的变化特征[J].环境科学学报,2020,40(3):1095-1102.
[28] Soinne H, Hyvaluoma J, Ketoja E, et al. Relative importance of organic carbon, land use and moisture conditions for the aggregate stability of post-glacial clay soils [J]. Soil & Tillage Research, 2016,158:1-9.
[29] 华娟,赵世伟,张扬,等.云雾山草原区不同植被恢复阶段土壤团聚体活性有机碳分布特征[J].生态学报,2009,29(9):4613-4619.
[30] Haynes R J, Beare M H. Influence of six crop species on aggregate stability and some labile organic matter fractions [J]. Soil Biology & Biochemistry, 1997,29(11/12):1647-1653.
[31] Six J, Elliott E T, Paustian K, et al. Aggregation and soil organic matter accumulation in cultivated and native grassland soils [J]. Soil Science Society of America Journal, 1998,62(5):1367-1377.
[32] Segoli M, De Gryze S, Dou F, et al. AggModel:A soil organic matter model with measurable pools for use in incubation studies [J]. Ecological Modelling, 2013,263:1-9.
[33] 苏卓侠,苏冰倩,上官周平.植物凋落物分解对土壤有机碳稳定性影响的研究进展[J].水土保持研究,2022,29(2):406-413.
[34] 张富荣.植被恢复对土壤有机碳固存及其周转速率的影响研究[D].兰州:兰州大学,2021.
[35] Malik A A, Puissant J, Buckeridge K M, et al. Land use driven change in soil pH affects microbial carbon cycling processes [J]. Nature Communications, 2018,9(1):3591.
[36] Zeng Q C, Liu D, An S S. Decoupled diversity patterns in microbial geographic distributions on the arid area(the Loess Plateau)[J]. Catena, 2021,196:104922.
[37] Xu M P, Li W J, Wang J Y, et al. Soil ecoenzymatic stoichiometry reveals microbial phosphorus limitation after vegetation restoration on the Loess Plateau, China [J]. Science of the Total Environment, 2022,815:152918.
[38] Cui Y X, Moorhead D L, Wang X X, et al. Decreasing microbial phosphorus limitation increases soil carbon release [J]. Geoderma, 2022,419:115868.
Similar References:

Memo

-

Last Update: 2023-08-10

Online:7648       Total Traffic Statistics:27437734

Website Copyright: Research of Soil and Water Conservation Shaanxi ICP No.11014090-10
Tel: 029-87012705 Address: Editorial Department of Research of Soil and Water Conservation, No. 26, Xinong Road, Yangling, Shaanxi Postcode: 712100