[1]WANG Yang,AI Yanmei,CHEN Honglu,et al.Effects of Biochar on the Physical and Chemical Properties and Heavy Metal Forms of Polluted Soil in the Dump of Copper Mining Area[J].Research of Soil and Water Conservation,2023,30(02):444-450.[doi:10.13869/j.cnki.rswc.2023.02.042]
Copy

Effects of Biochar on the Physical and Chemical Properties and Heavy Metal Forms of Polluted Soil in the Dump of Copper Mining Area

References:
[1] 朱迪,张朝晖,王智慧.农田—泥炭藓系统重金属富集特征与生态风险评价[J].环境科学,2022,43(4):2115-2123.
[2] 顾会,赵涛,高月,等.贵州省典型铅锌矿区土壤重金属污染特征及来源解析[J].地球与环境,2022,50(4):506-515.
[3] 廖月清,陈明,郑小俊,等.模拟酸雨条件下生物炭配施沸石对江西某钨矿区Pb, Cd, W的淋溶效应[J].水土保持学报,2021,35(6):319-326.
[4] 王俊楠.生物炭在土壤重金属污染修复中的应用[J].科技创新与应用,2019,273(17):162-163.
[5] 王慧芳,李辕成,杨雪,等.土壤重金属污染现状及修复技术研究[J].种子科技,2021,39(20):81-82.
[6] 张标,陈丽莹,韩兰芳,等.改性生物质炭钝化修复土壤重金属污染的研究进展[J].环境化学,2021,40(9):2693-2703.
[7] 魏忠平,朱永乐,赵楚峒,等.生物炭吸附重金属机理及其应用技术研究进展[J].土壤通报,2020,51(3):741-747.
[8] Siedt M, Schaffer A, Smith K E C, et al. Comparing straw, compost, and biochar regarding their suitability as agricultural soil amendments to affect soil structure, nutrient leaching, microbial communities, and the fate of pesticides[J]. Science of the Total Environment, 2021,751:19-28.
[9] Tao W M, Duan W Y, Liu C B, et al. Formation of persistent free radicals in biochar derived from rice straw based on a detailed analysis of pyrolysis kinetics[J]. Science of the Total Environment, 2020,715:136575.
[10] 李军佐.生物炭对优质粳稻秋田小町生理特性的影响[D].沈阳:沈阳农业大学,2017.
[11] 王昆艳,王豪吉,李双丽,等.施加生物炭对三七连作土壤铅有效态含量的影响[J].云南师范大学学报,2019,39(5):53-57.
[12] 朱一丹.多孔介质中土壤胶体与生物质炭对镉的吸附和迁移影响研究[D].长春:吉林大学,2020.
[13] 徐振涛.生物质炭对水稻富集汞的效应研究[D].杭州:浙江农林大学,2019.
[14] Mansoor S, Kour N, Manhas S, et al. Biochar as a tool for effective management of drought and heavy metal toxicity[J]. Chemosphere, 2020,271(4):129458.
[15] Alam I, Alam M, Khan A, et al. Biochar supplementation regulates growth and heavy metal accumulation in tomato grown in contaminated soils[J]. Physiologia Plantarum, 2021,173(1):340-351.
[16] 生态环境部. GB15618-2018土壤环境质量-农用地土壤污染风险管控标准(试行)[S].北京:中国标准出版社,2018: 2-3.
[17] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科学技术出版社,1999.
[18] 王鹏,贾学秀,涂明,等.北京某道路外侧土壤重金属形态特征与污染评价[J].环境科学与技术,2012,35(6):165-172.
[19] 韩召强,陈效民,曲成闯,等.生物质炭施用对潮土理化性状、酶活性及黄瓜产量的影响[J].水土保持学报,2017,31(6):272-278.
[20] 郜茹茹.花生壳及其生物质炭施用对旱地红壤肥力及红薯产量的影响[D].南昌:南昌工程学院,2020.
[21] Spokas K A. Impact of biochar field aging on laboratory greenhouse gas production potentials[J]. Global Change Biology Bioenergy, 2012,5(2):165-176.
[22] 靖彦,陈效民,李秋霞,等.生物质炭对红壤中硝态氮和铵态氮的影响[J].水土保持学报,2013,27(6):265-269.
[23] Eykelbosh A J, Johnson M S, Couto E G. Biochar decreases dissolved organic carbon but not nitrate leaching in relation to vinasse application in a Brazilian sugarcane soil[J]. Journal of Environmental Management, 2015,149:9-16.
[24] 闫翠萍,裴雪霞,王姣爱,等.秸秆还田与施氮对冬小麦生长发育及水肥利用率的影响[J].中国生态农业学报,2011,19(2):271-275.
[25] 邓建强.鄂西南土地整治区水土流失阻控及生物质炭改土效应研究[D].南京:南京农业大学,2017.
[26] 韩光明.生物炭对不同类型土壤理化性质和微生物多样性的影响[D].沈阳:沈阳农业大学,2013.
[27] 杨少斌,孙向阳,张骏达,等.北京市五环内绿地土壤4种重金属的形态特征及其生物有效性[J].水土保持通报,2018,38(3):79-85,93.
[28] Igalavithana A D, Lee S E, Lee Y H, et al. Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils[J]. Chemosphere, 2017,174:593-603.
[29] Ahmad M, Ok Y S, Kim B Y, et al. Impact of soybean stover and pine needle-derived biochar on Pb and As mobility, microbial community, and carbon stability in a contaminated agricultural soil[J]. Journal of Environmental Management, 2016,166:131-139.
Similar References:

Memo

-

Last Update: 2023-03-10

Online:10796       Total Traffic Statistics:27379829

Website Copyright: Research of Soil and Water Conservation Shaanxi ICP No.11014090-10
Tel: 029-87012705 Address: Editorial Department of Research of Soil and Water Conservation, No. 26, Xinong Road, Yangling, Shaanxi Postcode: 712100