[1]LI Pengfei,ZHANG Xiaochen,DANG Xu,et al.Investigation of Erosion Processes on the Slope-Gully System Using 3D Laser Scanning[J].Research of Soil and Water Conservation,2023,30(02):13-21.[doi:10.13869/j.cnki.rswc.2023.02.050]
Copy

Investigation of Erosion Processes on the Slope-Gully System Using 3D Laser Scanning

References:
[1] 张素,熊东红,吴汉,等.基于RUSLE模型的孙水河流域土壤侵蚀空间分异特征[J].水土保持学报,2021,35(5):24-30.
[2] Li P F, Mu X M, Joseph H, et al. Comparison of soil erosion models used to study the Chinese Loess Plateau[J]. Earth-Science Reviews, 2017,170:17-30.
[3] Zhao G J, Gao P, Tian P, et al. Assessing sediment connectivity and soil erosion by water in a representative catchment on the Loess Plateau, China[J]. Catena, 2020,185:104284.
[4] Wang H, Wang J, Zhang G H. Impact of landscape positions on soil erodibility indices in typical vegetation-restored slope-gully systems on the Loess Plateau of China[J]. Catena, 2021,201:105235.
[5] 苏远逸,李鹏,李占斌,等.坡面植被格局对坡沟系统能量调控及水沙响应关系的影响[J].水土保持学报,2017,31(5):32-39.
[6] 王承书,高峰,孙文义,等.黄土丘陵沟壑区坡沟系统不同降雨类型的土壤入渗特征[J].生态学报,2021,41(8):3111-3122.
[7] Li P F, Hao M K, HU J F, et al. Spatiotemporal patterns of hillslope erosion investigated based on field scouring experiments and terrestrial laser scanning[J]. Remote Sensing, 2021,13(9):1674.
[8] 张凯,王瑄,周丽丽,等.径流冲刷条件下冻融坡面产沙时空分布[J].水土保持学报,2017,31(5):139-144.
[9] Bryan R B. Soil erodibility and processes of water erosion on hillslope[J]. Geomorphology, 2000,32(3):385-415.
[10] Rejman J, Brodowski R. Rill characteristics and sediment transport as a function of slope length during a storm event on loess soil[J]. Earth Surface Processes and Landforms, 2005,30(2):231-239.
[11] Miernecki M, Wigneron J P, Lopez-baeza E, et al. Comparison of SMOS and SMAP soil moisture retrieval approaches using tower-based radiometer data over a vineyard field[J]. Remote Sensing of Environment, 2014,154:89-101.
[12] 韩鹏,倪晋仁,李天宏.细沟发育过程中的溯源侵蚀与沟壁崩塌[J].应用基础与工程科学学报,2002,10(2):115-125.
[13] Wells R R, Momm H G, Rigby J R, et al. An empirical investigation of gully widening rates in upland concentrated flows[J]. Catena, 2013,101:114-121.
[14] James L A, Watson D G, Hansen W F. Using LiDAR data to map gullies and headwater streams under forest canopy: South Carolina, USA[J]. Catena, 2007,71(1):132-144.
[15] 肖海,夏振尧,朱晓军,等.三维激光扫描仪在坡面土壤侵蚀研究中的应用[J].水土保持通报,2014,34(3):198-200.
[16] 游智敏,伍永秋,刘宝元.利用GPS进行切沟侵蚀监测研究[J].水土保持学报,2004,18(5):91-94.
[17] 胡刚,伍永秋,刘宝元,等.GPS和GIS进行短期沟蚀研究初探:以东北漫川漫岗黑土区为例[J].水土保持学报,2004,18(4):16-19,41.
[18] Chico G, Clutterbuck B, Midgley N, et al. Application of terrestrial laser scanning to quantify surface changes in restored and degraded blanket bogs[J]. Mires and Peat, 2019,24(14),1-24.
[19] 郑粉莉,徐锡蒙,覃超.沟蚀过程研究进展[J].农业机械学报,2016,47(8):48-59,116.
[20] Passalacqua P, Belmont P, Staley D M, et al. Analyzing high resolution topography for advancing the understanding of mass and energy transfer through landscapes:A review[J]. Earth-Science Reviews, 2015,148:174-193.
[21] 霍云云,吴淑芳,冯浩,等.基于三维激光扫描仪的坡面细沟侵蚀动态过程研究[J].中国水土保持科学,2011,9(2):32-37,46.
[22] 赵龙山,侯瑞,吴发启.黄土坡面细沟侵蚀研究进展与展望[J].中国水土保持,2017(9):47-51,67.
[23] 刘希林,张大林.基于三维激光扫描的崩岗侵蚀的时空分析[J].农业工程学报,2015,31(4):204-211.
[24] 谢谟文,胡嫚,杜岩,等. TLS技术及其在滑坡监测中的应用进展[J].国土资源遥感,2014,26(3):8-15.
[25] 朱建东,吴礼舟,李绍红,等.2种雨型的黄土坡面侵蚀室内试验[J].水土保持学报,2019,33(6):92-98.
[26] 付金霞,王静,张宝利,等.砒砂岩原状坡面不同季节复合侵蚀动力的贡献研究[J].农业工程学报,2020,36(11):66-73.
[27] 党维勤,党恬敏.辛店沟水土保持科技示范园景观资源及其美学意境分析[C]//2015海峡两岸水土保持学术研讨会论文集(上),中国山西太原,2015.
[28] 王伟,李志能,李鹏,等.连续极端暴雨事件下小流域侵蚀泥沙流失规律研究[J].西安理工大学学报,2020,36(3):286-293.
[29] 杨帆,潘成忠.黄土丘陵沟壑区多年生草地的保水固土效益[J].水土保持通报,2016,36(2):300-306.
[30] Sun W, Shao Q, Liu J, et al. Assessing the effects of land use and topography on soil erosion on the Loess Plateau in China[J]. Catena, 2014,121:151-163.
[31] Gong J G, Jia Y W, Zhou Z H, et al. An experimental study on dynamic processes of ephemeral gully erosion in loess landscapes[J]. Geomorphology, 2011,125(1):203-213.
[32] Girardeau-Montaut D, Roux M, Marc R, et al. Change detection on points cloud data acquired with a ground laser scanner[C]//International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. Germany, 2005.
[33] Barnhart T, Crosby B. Comparing two methods of surface change detection on an evolving thermokarst using high-temporal-frequency terrestrial laser scanning, Selawik River, Alaska[J]. Remote Sensing, 2013,5(6):2813-2837.
[34] Lague D, Brodu N, Leroux J. Accurate 3 D comparison of complex topography with terrestrial laser scanner:Application to the Rangitikei canyon(N-Z)[J]. Isprs Journal of Photogrammetry and Remote Sensing, 2013,82:10-26.
[35] Wheaton J M, Brasington J, Darby S E, et al. Accounting for uncertainty in DEMs from repeat topographic surveys:improved sediment budgets[J]. Earth Surface Processes and Landforms, 2010,35(2):136-156.
[36] Nourbakhshbeidokhti S, Kinoshita A, Chin A, et al. A Workflow to estimate topographic and volumetric changes and errors in channel sedimentation after disturbance[J]. Remote Sensing, 2019,11(5):586.
[37] Milan D J, Heritage G, Hetherington D. Application of a 3 D laser scanner in the assessment of erosion and deposition volumes and channel change in a proglacial river[J]. Earth Surface Processes and Landforms, 2007,32(11):1657-1674.
[38] Milan D J, Heritage G, Large A R G, et al. Filtering spatial error from DEMs: Implications for morphological change estimation[J]. Geomorphology, 2011,125(1):160-171.
[39] Lane S, Westaway R M, Hicks M. Estimation of erosion and deposition volumes in a large, gravel-bed, braided river using synoptic remote sensing[J]. Earth Surface Processes and Landforms, 2003,28(3):249-271.
[40] Collins B D, Corbett S C, Fairley H C, et al. Topographic change detection at select archeological sites in Grand Canyon National Park, Arizona, 2007—2010[R]. U. S. Geological Survey Scientific Investigations Report, 2012.
[41] Cavalli M, Goldin B, Comiti F, et al. Assessment of erosion and deposition in steep mountain basins by differencing sequential digital terrain models[J]. Geomorphology, 2017,291:4-16.
[42] Lane S, Westaway R M, Hicks M. Estimation of erosion and deposition volumes in a large, gravel-bed, braided river using synoptic remote sensing[J]. Earth Surface Processes and Landforms, 2003,28(3):249-271.
[43] Wheaton J M, Brasington J, Darby S E, et al. Accounting for uncertainty in DEMs from repeat topographic surveys:improved sediment budgets[J]. Earth Surface Processes and Landforms, 2009,35(2):136-156.
[44] Rengers F K, Tucker G E, Moody J A, et al. Illuminating wildfire erosion and deposition patterns with repeat terrestrial lidar[J]. Journal of Geophysical Research Earth Surface, 2016,121(3):588-608.
[45] 朱建东,吴礼舟,李绍红,等.2种雨型的黄土坡面侵蚀室内试验[J].水土保持学报,2019,33(6):92-98.
[46] Winiwarter L, Anders K, Höfle B. M3 C2-EP:Pushing the limits of 3D topographic point cloud change detection by error propagation[J]. Isprs Journal of Photogrammetry and Remote Sensing, 2021,178:240-258.
[47] Abellán A, Jaboyedoff M, Oppikofer T, et al. Detection of millimetric deformation using a terrestrial laser scanner: Experiment and application to a rockfall event[J]. Natural Hazards and Earth System Sciences, 2009,9(2):365-372.
[48] 王玲玲,姚文艺,王文龙,等.黄丘区坡沟系统不同时间尺度下的侵蚀产沙特征[J].水利学报,2013,44(11):1347-1351.
[49] Li M, Yao W Y, Ding W F, et al. Effect of grass coverage on sediment yield in the hillslope-gully side erosion system[J]. Journal of Geographical Sciences, 2009,19(3):321-330.
[50] 杨春霞,李莉,王佳欣,等.坡沟系统侵蚀时空分布特征试验研究[J].人民黄河,2017,39(1):95-97.
[51] 丁文峰,李勉,张平仓,等.坡沟系统侵蚀产沙特征模拟试验研究[J].农业工程学报,2006,22(3):10-14.
[52] 张光辉.切沟侵蚀研究进展与展望[J].水土保持学报,2020,34(5):1-13.
[53] Allen P M, Arnold J, Auguste L, et al. Application of a simple headcut advance model for gullys[J]. Earth Surface Processes and Landforms, 2017,43(7):202-217.
Similar References:

Memo

-

Last Update: 2023-03-10

Online:11362       Total Traffic Statistics:27386250

Website Copyright: Research of Soil and Water Conservation Shaanxi ICP No.11014090-10
Tel: 029-87012705 Address: Editorial Department of Research of Soil and Water Conservation, No. 26, Xinong Road, Yangling, Shaanxi Postcode: 712100