[1]YANG En,WANG Baorong,YAO Hongjia,et al.Dynamics of Particulate and Mineral-Associated Organic Carbon During the Development of Biological Soil Crusts in the Loess Plateau[J].Research of Soil and Water Conservation,2023,30(01):25-33,40.[doi:10.13869/j.cnki.rswc.20220427.001]
Copy

Dynamics of Particulate and Mineral-Associated Organic Carbon During the Development of Biological Soil Crusts in the Loess Plateau

References:
[1] Lal R. Soil carbon sequestration to mitigate climate change[J]. Geoderma, 2004,123:1-22.
[2] Houghton R A, Skole D L, Nobre C A, et al. Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon[J]. Nature, 2000,403:301-304.
[3] Kleber M, Lehmann J. The contentious nature of soil organic matter[J]. Nature, 2015,528:60-68.
[4] Cotrufo M F, Ranalli M G, Haddix M L, et al. Soil carbon storage informed by particulate and mineral-associated organic matter[J]. Nature Geoscience, 2019,12:989-994.
[5] Lavallee J M, Soong J L, Cotrufo M F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century[J]. Global Change Biology, 2020,26:261-273.
[6] Sokol N W, Kuebbing S E, Ayala E K, et al. Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon[J]. New Phytologist, 2019,221:233-246.
[7] 梁爱珍,张晓平,杨学明,等.土壤细颗粒对有机质的保护能力研究[J].土壤通报,2005,36(5):748-752.
[8] Cotrufo M F, Wallenstein M D, Boot C M, et al. The Microbial Efficiency-Matrix Stabilization(MEMS) framework integrates plant litter decomposition with soil organic matter stabilization:Do labile plant inputs form stable soil organic matter?[J]. Global Change Biology, 2013,19:988-995.
[9] Sokol N W, Sanderman J, Bradford M A. Pathways of mineral-associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry[J]. Global Change Biology, 2018,25:12-24.
[10] Belnap J, Weber B, Büdel B. Biological soil crusts as an organizing principle in drylands. Biological Soil Crusts: An Organizing Principle in Drylands[J].2016,226:3-13.
[11] 李新荣,张元明,赵允格.生物土壤结皮研究:进展、前沿与展望[J].地球科学进展,2009,24(1):11-24.
[12] He M, Hu R, Jia R L. Biological soil crusts enhance the recovery of nutrient levels of surface dune soil in arid desert regions[J]. Ecological Indicators, 2019,106:doi. org/10,1016/j. ecolind.2019.105497.
[13] Belnap J, Lange O L. Biological soil crusts:Structure, function, and management. Berlin, Heidelberg:Springer[M], Geoderma, 2002:03.
[14] Gao L Q, Bowker M A, Xu M X, et al. Biological soil crusts decrease erodibility by modifying inherent soil properties on the Loess Plateau, China[J]. Soil Biology Biochemistry, 2017,105:49-58.
[15] Yang X Q, Xu M X, Zhao Y G, et al. Moss-dominated biological soil crusts improve stability of soil organic carbon on the Loess Plateau, China[J]. Plant Soil and Environment, 2019,65:104-109.
[16] Li X R, Xiao H L, Zhang J G, et al. Long-term ecosystem effects of sand-binding vegetation in the Tengger Desert, northern China[J]. Restoration Ecology, 2010,12:376-390.
[17] Zhao Y G, Xu M X. Runoff and soil loss from revegetated grasslands in the hilsy loess plateau region, China: influence of biocrust patches and plant canopies[J]. Journal of Hydrologic Engineering, 2013,18:387-393.
[18] 张冠华,胡甲均.生物结皮土壤—水文—侵蚀效应研究进展[J].水土保持学报,2019,33(1):3-10.
[19] 查轩,唐克丽.水蚀风蚀交错带小流域生态环境综合治理模式研究[J].自然资源学报,2000,15(1):97-100.
[20] Cambardella C A, Elliott E T. Particulate soil organic-matter changes across a grassland cultivation sequence[J]. Soil Science Society of America Journal, 1992,56:777-783.
[21] 鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000.
[22] Ashagrie Y, Zech W, Guggenberger G, et al. Soil aggregation, and total and particulate organic matter following conversion of native forests to continuous cultivation in Ethiopia[J]. Soil and Tillage Research, 2007,94:101-108.
[23] 梁爱珍,张晓平,杨学明,等.黑土颗粒态有机碳与矿物结合态有机碳的变化研究[J].土壤学报,2010,47(1):153-158.
[24] Lan S B, Wu L, Zhang D L, et al. Successional stages of biological soil crusts and their microstructure variability in Shapotou region(China)[J]. Environmental Earth Sciences, 2012,65:77-88.
[25] Zhao Y, Zhang Z S, Hu Y G, et al. The seasonal and successional variations of carbon release from biological soil crust-covered soil[J]. Journal of Arid Environments, 2016,127:148-153.
[26] Drahorad S, Eckhardt K U, Felix-Henningsen P, et al. Spatial carbon and nitrogen distribution and organic matter characteristics of biological soil crusts in the Negev desert(Israel)along a rainfall gradient[J]. Journal of Arid Environments, 2013,94:18-26.
[27] Pietrasiak N, Regus J U, Johansen J R, et al. Biological soil crust community types differ in key ecological functions[J]. Soil Biology Biochemistry, 2013,65:168-171.
[28] 李新荣,周海燕,王新平,等.中国干旱沙区的生态重建与恢复:沙坡头站60年重要研究进展综述[J].中国沙漠,2016,36(2):247-264.
[29] Dümig A, Veste M, Hagedorn F, et al. Organic matter from biological soil crusts induces the initial formation of sandy temperate soils[J]. Catena, 2014,122:196-208.
[30] Liu Y B, Zhao L N, Wang R. Changes in functional gene structure and metabolic potential of the microbial community in biological soil crusts along a revegetation chronosequence in the Tengger Desert[J]. Soil Biology and Biochemistry, 2018,126:40-48.
[31] Chamizo S, Cantón Y, Lázaro R, et al. Crust composition and disturbance drive infiltration through biological soil crusts in semiarid ecosystems[J]. Ecosystems, 2012,15:148-161.
[32] 吴丽,张高科,陈晓国,等.生物结皮的发育演替与微生物生物量变化[J].环境科学,2014,35(4):1479-1485.
[33] 肖波,赵允格,许明祥,等.陕北黄土区生物结皮条件下土壤养分的积累及流失风险[J].应用生态学报,2008,19(5):1019-1026.
[34] 杨建振,卜崇峰,张兴昌.陕北毛乌素沙地生物结皮发育特征的初步研究[J].水土保持学报,2009,23(6):162-165,189.
[35] 都军,李宜轩,杨晓霞,等.腾格里沙漠东南缘生物土壤结皮对土壤理化性质的影响[J].中国沙漠,2018,38(1):111-116.
[36] 张元明.荒漠地表生物土壤结皮的微结构及其早期发育特征[J].科学通报,2005,50(1):42-47.
[37] 闫德仁,王素英,吕景辉,等.生物结皮层土壤微生物含量的变化[J].内蒙古林业科技,2008,2(34):1-5.
[38] Liang C, Schimel J P, Jastrow J D. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology, 2017,2:1-6.
[39] 饶本强,王伟波,兰书斌,等.库布齐沙地三年生人工藻结皮发育特征及微生物分布[J].水生生物学报,2009,33(5):937-944.
[40] 吴楠,潘伯荣,张元明,等.古尔班通古特沙漠生物结皮中土壤微生物垂直分布特征[J].应用与环境生物学报,2005,11(3):349-353.
[41] Isabelle B, Fiona E. Regulation of carbon and nitrogen exchange rates in biological soil crusts by intrinsic and land use factors in the Sahel area[J]. Soil Biology & Biochemistry, 2014,72:133-144.
[42] Evans R D, Lange O L. Biological Soil Crusts and Ecosystem Nitrogen and Carbon Dynamics[M]. Belnap J, Lange O L. Biological Soil Crusts: Structure, Function, and Management. Ecological Studies: Analysis and Synthesis, Springer, Berlin, Heidelberg,2001.
[43] 李云飞,马晓俊,李小军.固沙植被演替过程中藓类结皮及其表层土壤理化性质变化[J].兰州大学学报:自然科学版,2020,56(4):DOI:10.13885/j.issn.0455-2059.2020.04.005.
[44] Lan S B, Wu L, Zhang D L, et al. Assessing level of development and successional stages in biological soil crusts with biological indicators[J]. Soil Microbiology, 2013,66:394-403.
[45] Beymer R J, Klopatek J M. Potential contribution of carbon by microphytic crusts in pinyon-juniper woodlands[J]. Arid Soil Research & Rehabilitation, 1991,5:187-198.
[46] 方华军,杨学明,张晓平,等.黑土坡耕地侵蚀和沉积对物理性组分有机碳积累与损耗的影响[J].土壤学报,2007,44(3):467-474.
[47] Craig M E, Mayes M A, Sulman B N, et al. Biological mechanisms may contribute to soil carbon saturation patterns[J]. Global Change Biology, 2021,27:2633-2644.
[48] Tian Q X, Wang D Y, Li D, et al. Variation of soil carbon accumulation across a topographic gradient in a humid subtropical mountain forest[J]. Biogeochemistry, 2020,149:337-354.
[49] Chen J, Xiao W, Zheng C, et al. Nitrogen addition has contrasting effects on particulate and mineral-associated soil organic carbon in a subtropical forest[J]. Soil Biology and Biochemistry, 2020,142:107708.
Similar References:

Memo

-

Last Update: 2023-01-10

Online:1729       Total Traffic Statistics:27501475

Website Copyright: Research of Soil and Water Conservation Shaanxi ICP No.11014090-10
Tel: 029-87012705 Address: Editorial Department of Research of Soil and Water Conservation, No. 26, Xinong Road, Yangling, Shaanxi Postcode: 712100