[1]PAN Yawen,MA Wenlong,PAN Qingbin,et al.Review of the Scale Effects of Soil Erosion and Sediment Delivery and Their Influencing Factors[J].Research of Soil and Water Conservation,2022,29(03):88-97+105.
Copy

Review of the Scale Effects of Soil Erosion and Sediment Delivery and Their Influencing Factors

References:
[1] Sidle R C. Hydrogeomorphic processes and scaling issues in the continuum from soil pedions to catchments[J]. Earth-Science Reviews, 2017,175:75-96.
[2] Guastini E, Zuecco G, Errico A, et al. How does streamflow response vary with spatial scale Analysis of controls in three nested Alpine catchments[J]. Journal of Hydrology, 2019,570:705-718.
[3] Bagarello V, Ferro V, Keesstra S, et al. Testing simple scaling in soil erosion processes at plot scale[J]. Catena, 2018,167:171-180.
[4] 任立良,刘新仁,郝振纯.水文尺度若干问题研究述评[J].水科学进展,1996,7(S1):87-99.
[5] 朱吉生,黄诗峰,李纪人,等.水文模型尺度问题的若干探讨[J].人民黄河,2015,37(5):31-37.
[6] 付兴涛,姚璟.降雨条件下坡长对陡坡产流产沙过程影响的模拟试验研究[J].水土保持学报,2015,29(5):20-24.
[7] 王奇花,高玉凤,田沉,等. EUROSEM模型对晋西黄绵土坡面侵蚀过程的模拟应用[J].水利学报,2021,52(1):120-127.
[8] 王占礼,黄新会,张振国,等.黄土裸坡降雨产流过程试验研究[J].水土保持通报,2005,25(4):1-4.
[9] Asadzadeh F, Gorji M, Vaezi A, et al. Scale effect on runoff from filed plots under natural rainfall[J]. American-Eurasian Journal of Agricultural & Environmental Sciences, 2012,12(9):1148-1152.
[10] Zhang X, Hu M, Guo X, et al. Effects of topographic factors on runoff and soil loss in Southwest China[J]. Catena, 2018,160:394-402.
[11] Chen L, Sela S, Svoray T, et al. Scale dependence of Hortonian rainfall-runoff processes in a semiarid environment[J]. Water Resources Research, 2016,52(7):5149-5166.
[12] 郭新亚,张兴奇,顾礼彬,等.坡长对黔西北地区坡面产流产沙的影响[J].水土保持学报,2015,29(2):40-44.
[13] Moreno M, Nicolau M, Merino L, et al. Plot-scale effects on runoff and erosion along a slope degradation gradient[J]. Water Resources Research, 2010,46(4):W04503.
[14] Martinez G, Weltz M, Pierson F B, et al. Scale effects on runoff and soil erosion in rangelands: Observations and estimations with predictors of different availability[J]. Catena, 2017,151:161-173.
[15] Dengfeng L, Fuqiang T, Hongchang H, et al. The role of run-on for overland flow and the characteristics of runoff generation in the Loess Plateau, China[J]. Hydrological Sciences Journal, 2012,57(6):1107-1117.
[16] 付兴涛.坡面径流侵蚀产沙及动力学过程的坡长效应研究[D].杭州:浙江大学,2012.
[17] 马春艳,王占礼,谭贞学.黄土坡面产流动态变化过程试验模拟[J].干旱区农业研究,2007,25(6):122-143.
[18] Wu S, Chen L, Wang N, et al. Variable power-law scaling of hillslope Hortonian rainfall-runoff processes[J]. Hydrological Processes, 2019,33(22):2926-2938.
[19] Lemma T M, Gessesse G D, Kassa A K, et al. Effect of spatial scale on runoff coefficient: Evidence from the Ethiopian highlands[J]. International Soil and Water Conservation Research, 2018,6(4):289-296.
[20] Jourgholami M, Labelle E R. Effects of plot length and soil texture on runoff and sediment yield occurring on machine-trafficked soils in a mixed deciduous forest[J]. Annals of Forest Science, 2020,77(1):1-11.
[21] 黎四龙,蔡强国,吴淑安,等.坡长对径流及侵蚀的影响[J].干旱区资源与环境,1998,12(1):29-35.
[22] 王秀颖,刘和平,刘宝元.变雨强人工降雨条件下坡长对径流的影响研究[J].水土保持学报,2010,24(6):1-5,10.
[23] 方海燕,蔡强国,李秋艳.黄土丘陵沟壑区坡面产流能力及影响因素研究[J].地理研究,2009,28(3):583-591.
[24] Stomph J, Ridder N, Steenhuis S, et al. Scale effects of Hortonian overland flow and rainfall-runoff dynamics: laboratory validation of a process-based model[J]. Earth Surface Processes and Landforms, 2002,27(8):847-855.
[25] Langhans C, Govers G, Diels J, et al. Modeling scale-dependent runoff generation in a small semi-arid watershed accounting for rainfall intensity and water depth[J]. Advances in Water Resources, 2014,69(4):65-78.
[26] Mounirou L, Zouré O, Yonaba R, et al. Multi-scale analysis of runoff from a statistical perspective in a small Sahelian catchment under semi-arid climate[J]. Arabian Journal of Geosciences, 2020,13(4):1-16.
[27] Langhans C, Diels J, Clymans W, et al. Scale effects of runoff generation under reduced and conventional tillage[J]. Catena, 2019,176:1-13.
[28] Kasraie L. Overland flow scaling behavior in a burned dry hillslope[D]. Melbourne: University of Melbourne, 2020.
[29] Prats S, Malvar M, Vieira D, et al. Effectiveness of hydromulching to reduce runoff and erosion in a recently burnt pine plantation in central Portugal[J]. Land Degradation & Development, 2016,27(5):1319-1333.
[30] 吴松柏.坡面水力侵蚀过程中坡度与尺度效应研究[D].武汉:武汉大学,2017.
[31] Evans R, Taylor J. Some methods of directly assessing water erosion of cultivated land-a comparison of measurements made on plots and in fields[J]. Progress in Physical Geography, 1995,19(1):115-129.
[32] Parsons A J, Brazier R E, Wainwright J, et al. Scale relationships in hillslope runoff and erosion[J]. Earth Surface Processes & Landforms, 2010,33(10):1637-1638.
[33] Wilcox B P, Breshears D D, Allen C D. Ecohydrology of a resource-conserving semiarid woodland: Effects of scale and disturbance[J]. Ecological Monographs, 2003,73(2):223-239.
[34] Yair A, Yassif N. Hydrological processes in a small arid catchment: Scale effects of rainfall and slope length[J]. Geomorphology, 2004,61(1):155-169.
[35] Ghahramani A, Ishikawa Y, Gomi T. Slope length effect on sediment and organic litter transport on a steep forested hillslope:upscaling from plot to hillslope scale[J]. Hydrological Research Letters, 2011,5:16-20.
[36] 蔡强国.坡长在坡面侵蚀产沙过程中的作用[J].泥沙研究,1989,8(4):84-91.
[37] Koomson E, Muoni T, Marohn C, et al. Critical slope length for soil loss mitigation in maize-bean cropping systems in SW Kenya[J]. Geoderma Regional, 2020,22:e00311.
[38] 郑粉莉,唐克丽,周佩华.坡耕地细沟侵蚀影响因素的研究[J].土壤学报,1989,26(2):109-116.
[39] Bagio B, Bertol I, Wolschick N H, et al. Water erosion in different slope lengths on bare soil[J]. Revista Brasileira De Ciência Do Solo, 2017,41:1-15.
[40] 陈永宗,景可,蔡强国.黄土高原现代治理[M].北京:科学出版社,1988.
[41] 张乐涛.基于侵蚀能量的径流输沙尺度效应研究[D].陕西杨凌:中国科学院研究生院; 教育部水土保持与生态环境研究中心,2016.
[42] 王文龙,雷阿林,李占斌,等.土壤侵蚀链内细沟浅沟切沟流动力机制研究[J].水科学进展,2003,14(4):371-375.
[43] 雷阿林,唐克丽,王文龙,等.土壤侵蚀链概念的科学意义及其特征[J].水土保持学报,2000,14(3):79-83.
[44] Parsons A J, Stromberg S G L. Experimental analysis of size and distance of travel of unconstrained particles in interrill flow[J]. Water Resources Research, 1998,34(9):2377-2381.
[45] Parsons A J, Wainwright J, Mark Powell D, et al. A conceptual model for determining soil erosion by water[J]. Earth Surface Processes & Landforms, 2004,29(10):1293-1302.
[46] 孔亚平,张科利,唐克丽.坡长对侵蚀产沙过程影响的模拟研究[J].水土保持学报,2001,15(2):17-20,24.
[47] Elh C. Scale dependent thresholds in hydrological and erosion response of a semi-arid catchment in southeast Spain[J]. Agriculture Ecosystems & Environment, 2004,104(2):317-332.
[48] Delmas M, Pak L, Cerdan O, et al. Erosion and sediment budget across scale: A case study in a catchment of the European loess belt[J]. Journal of Hydrology, 2012,420:255-263.
[49] Kidron G J. Runoff generation and sediment yield on homogeneous dune slopes: Scale effect and implications for analysis[J]. Earth Surface Processes & Landforms, 2011,36(13):1809-1824.
[50] Zhang Q, Liu J, Yu X, et al. Scale effects on runoff and a decomposition analysis of the main driving factors in Haihe Basin mountainous area[J]. Science of the Total Environment, 2019,690:1089-1099.
[51] Mills C F, Bathurst J C. Spatial variability of suspended sediment yield in a gravel-bed river across four orders of magnitude of catchment area[J]. Catena, 2015,133:14-24.
[52] Lange J. Dynamics of transmission losses in a large arid stream channel[J]. Journal of Hydrology, 2005,306(1):112-126.
[53] McGlynn B L, McDonnell J J, Seibert J, et al. Scale effects on headwater catchment runoff timing, flow sources, and groundwater-streamflow relations[J]. Water Resources Research, 2004,40(7):379-405.
[54] Freeman M C, Pringle C M, Jackson C R. Hydrologic connectivity and the contribution of stream headwaters to ecological integrity at regional scales[J]. Journal of the American Water Resources Association, 2010,43(1):5-14.
[55] Inoubli N, Raclot D, Mekki I, et al. A spatiotemporal multiscale analysis of runoff and erosion in a Mediterranean Marly catchment[J]. Vadose Zone Journal, 2017,16(12):1-12.
[56] Sivapalan M. Process complexity at hillslope scale, process simplicity at the watershed scale: Is there a connection[J]. Hydrological Processes, 2003,17(17):1037-1041.
[57] Merz R, Parajka J, Blöschl G. Scale effects in conceptual hydrological modeling[J]. Water Resources Research, 2009,45(9):627-643.
[58] Bl Schl G, Sivapalan M. Scale issues in hydrological modelling: A review[J]. Hydrological Processes, 1995,9(3):251-290.
[59] 李彬权,朱畅畅,梁忠民,等.基于分形理论的新安江模型参数空间尺度效应分析[J].南水北调与水利科技:中英文,2020,18(3):1-14.
[60] Cristiano E, Veldhuis M, Wright D, et al. The influence of rainfall and catchment critical scales on urban hydrological response sensitivity[J]. Water Resources Research, 2019,55(4):3375-3390.
[61] Miyata S, Gomi T, Sidle R C, et al. Assessing spatially distributed infiltration capacity to evaluate storm runoff in forested catchments:Implications for hydrological connectivity[J]. Science of the Total Environment, 2019,669:148-159.
[62] Veldhuis M, Zhou Z, Yang L, et al. The role of storm scale, position and movement in controlling urban flood response[J]. Hydrology and Earth System Sciences, 2018,22(1):417-436.
[63] Cristiano E, Veldhuis M, Gaitan S, et al. Critical scales to explain urban hydrological response: An application in Cranbrook, London[J]. Hydrology and Earth System Sciences, 2018,22(4):2425-2447.
[64] Cerdan O, Bissonnais Y L, Govers G, et al. Scale effect on runoff from experimental plots to catchments in agricultural areas in Normandy[J]. Journal of Hydrology, 2004,299(1):4-14.
[65] Bergström S, Graham L. On the scale problem in hydrological modelling[J]. Journal of Hydrology, 1998,211(4):253-265.
[66] Schilling K E, Helmers M. Tile drainage as karst: Conduit flow and diffuse flow in a tile-drained watershed[J]. Journal of Hydrology, 2008,349(4):291-301.
[67] McDonnell J, Sivapalan M, Vaché K, et al. Moving beyond heterogeneity and process complexity: A new vision for watershed hydrology[J]. Water Resources Research, 2007,43(7):1-6.
[68] Sun P, Wu Y, Xiao J, et al. Remote sensing and modeling fusion for investigating the ecosystem water-carbon coupling processes[J]. Science of the Total Environment, 2019,697:134064.
[69] Cammeraat L H. A review of two strongly contrasting geomorphological systems within the context of scale[J]. Earth Surface Processes & Landforms, 2002,27(11):1201-1222.
[70] Gómez J, Nearing M, Giráldez J, et al. Analysis of sources of variability of runoff volume in a 40 plot experiment using a numerical model[J]. Journal of Hydrology, 2001,248(1):183-197.
[71] Nearing M A, Govers G, Norton L D. Variability in soil erosion data from replicated plots[J]. Soil Science Society of America Journal, 1999,63:1829-1835.
[72] Li T, Wang G, Xue H, et al. Soil erosion and sediment transport in the gullied Loess Plateau: Scale effects and their mechanisms[J]. Science in China Series E:Technological Sciences, 2009,52(5):1283-1292.
[73] Bartley R, Speirs W J, Ellis T W, et al. A review of sediment and nutrient concentration data from Australia for use in catchment water quality models[J]. Marine Pollution Bulletin, 2012,65(4):101-116.
[74] Valentin C, Poesen J, Li Y. Gully erosion: Impacts, factors and control[J]. Catena, 2005,63(2):132-153.
[75] Lane L J, Hernandez M, Nichols M. Processes controlling sediment yield from watersheds as functions of spatial scale[J]. Environmental Modelling & Software, 1997,12(4):355-369.
[76] Chorley R J, Schumm S A, Sugden D E. Geomorphology[M]. London: Methuen, 1984.
[77] 闫云霞,许炯心, Hasson M,等.长江流域侵蚀产沙尺度效应的区域分异[J].山地学报,2011,29(2):15-27.
[78] Milliman J D, Syvitski J P M. Geomorphic/Tectonic control of sediment discharge to the ocean:the importance of small mountainous rivers[J]. Journal of Geology, 1992,100(5):525-544.
[79] Dedkov A P, Mozzherin V I. Erosion and sediment yield in mountain regions of the world[R]. Chengdu:Iahs Publish, 1992.
[80] De Vente J, Poesen J. Predicting soil erosion and sediment yield at the basin scale:Scale issues and semi-quantitative models[J]. Earth-Science Reviews, 2005,71(1/2):95-125.
[81] Xu J, Yan Y. Scale effects on specific sediment yield in the Yellow River basin and geomorphological explanations[J]. Journal of Hydrology, 2005,307(1):219-232.
[82] 景可,师长兴.流域输沙模数与流域面积关系研究[J].泥沙研究,2007,32(1):17-23.
[83] 颜明,郑明国,舒畅,等.泾河流域径流—泥沙的尺度效应研究[J].水土保持通报,2016,36(6):184-188,194.
[84] 颜明,贺莉,郑明国,等.泾河流域高含沙水流的尺度效应研究[J].水土保持学报,2017,31(4):75-80.
[85] 张晓明,曹文洪,武思宏,等.泥沙输移比尺度依存及分形特征[J].水利学报,2013,44(10):1225-1232.
[86] 张晓明,曹文洪,周利军,等.泥沙输移比及其尺度依存研究进展[J].生态学报,2014,34(24):7475-7485.
[87] 张光辉.对土壤侵蚀研究的几点思考[J].水土保持学报,2020,34(4):21-30.
[88] Liu B, Nearing M A, Shi P, et al. Slope length effects on soil loss for steep slopes[J]. Soil Science Society of America Journal, 2000,64(5):1759-1763.
[89] Amore E, Modica C, Nearing M A, et al. Scale effect in USLE and WEPP application for soil erosion computation from three Sicilian basins[J]. Journal of Hydrology, 2004,293(1/4):100-114.
[90] Mutema M, Chaplot V, Jewitt G, et al. Annual water, sediment, nutrient, and organic carbon fluxes in river basins: A global meta-analysis as a function of scale[J]. Water Resources Research, 2015,51(11):8949-8972.
[91] Lintern A, Webb J A, Ryu D, et al. Key factors influencing differences in stream water quality across space[J]. Wires Water, 2018,5(1):1-31.
[92] Lintern A, Webb J A, Ryu D, et al. What are the key catchment characteristics affecting spatial differences in riverine water quality[J]. Water Resources Research, 2018,54(10):7252-7272.
[93] Gurevitch J, Koricheva J, Nakagawa S, et al. Meta-analysis and the science of research synthesis[J]. Nature, 2018,555(7695):175-182.
[94] Grekousis G. Artificial neural networks and deep learning in urban geography:A systematic review and meta-analysis[J]. Computers, Environment and Urban Systems, 2019,74:244-256.
[95] Chang K, Merghadi A, Yunus A P, et al. Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques[J]. Scientific Reports, 2019,9(1):12296.
[96] Künzel S, Sekhon J, Bickel P, et al. Metalearners for estimating heterogeneous treatment effects using machine learning[J]. Proceedings of the National Academy of Sciences, 2019,116(10):4156-4165.
[97] Miller H J, Goodchild M F. Data-driven geography[J]. Geojournal, 2015,80(4):449-461.
[98] Vereecken H, Schnepf A, Hopmans J, et al. Modeling soil processes:Review, key challenges, and new perspectives[J]. Vadose Zone Journal, 2016,15(5): doi. org/10,2136/vzj2015.09.0131.
[99] Fiener P, Wilken F, Auerswald K. Filling the gap between plot and landscape scale-eight years of soil erosion monitoring in 14 adjacent watersheds under soil conservation at Scheyern, Southern Germany[J]. Advances in Geosciences, 2019,48:31-48.
[100] Alexander R B, Boyer E W, Smith R A, et al. The role of headwater streams in downstream water quality[J]. Journal of the American Water Resources Association, 2007,43(1):41-59.
[101] Nadeau T, Rains M. Hydrological connectivity between headwater streams and downstream waters:How science can inform policy1[J]. Journal of the American Water Resources Association, 2007,43(1):118-133.
[102] Creed I F, Lane C R, Serran J N, et al. Enhancing protection for vulnerable waters[J]. Nature Geoscience, 2017,10(11):809-815.
[103] Mutema M, Jewitt G, Chivenge P, et al. Spatial scale impact on daily surface water and sediment fluxes in Thukela river, South Africa[J]. Physics and Chemistry of the Earth, Parts A/B/C,2016,92:34-43.
[104] Kinzel P J, Legleiter C J. sUAS-based remote sensing of river discharge using thermal particle image velocimetry and bathymetric lidar[J]. Remote Sensing, 2019,11(19):doi. org/10,3390/rs11192317.
[105] Fulton J W, Anderson I E, Chiu C L, et al. QCam:SUAS-based Doppler radar for measuring river discharge[J]. Remote Sensing, 2020,12(20):doi. org/10,3390/rs12203317.
[106] Wagener T, Sivapalan M, Troch P A, et al. The future of hydrology:An evolving science for a changing world[J]. Water Resources Research, 2010,46(5):doi. org/10,1029/2009 WR008906.
[107] 张光辉.植被恢复背景下土壤侵蚀研究需要加强的内容[J].中国水土保持,2020,41(9):76-79.
[108] Golden H E, Hoghooghi N. Green infrastructure and its catchment-scale effects:an emerging science[J]. Wiley Interdisciplinary Reviews:Water, 2018,5(1):e1254.
[109] Ichiba A, Gires A, Tchiguirinskaia I, et al. Scale effect challenges in urban hydrology highlighted with a distributed hydrological model[J]. Hydrology and Earth System Sciences, 2018,22(1):331-350.
Similar References:

Memo

-

Last Update: 2022-04-20

Online:11861       Total Traffic Statistics:27383073

Website Copyright: Research of Soil and Water Conservation Shaanxi ICP No.11014090-10
Tel: 029-87012705 Address: Editorial Department of Research of Soil and Water Conservation, No. 26, Xinong Road, Yangling, Shaanxi Postcode: 712100