[1]ZHANG Yuanping,LIU Chengshuai,XIAO Haibing,et al.Evaluation of Watershed Sediment Yield Based on Hydrological Connectivity[J].Research of Soil and Water Conservation,2022,29(03):64-70.
Copy

Evaluation of Watershed Sediment Yield Based on Hydrological Connectivity

References:
[1] 冯家豪,赵广举,穆兴民,等.黄河中游泥沙输移特性及机理研究[J].泥沙研究,2020,45(5):34-41.
[2] 李占斌,朱冰冰.土壤侵蚀与水土保持研究进展[J].土壤学报,2008,45(5):802-809.
[3] Chuenchum P, Xu M Z, Tang W Z. Predicted trends of soil erosion and sediment yield from future land use and climate change scenarios in the Lancang-Mekong River by using the modified RUSLE model[J]. International Soil and Water Conservation Research, 2020,8(3):213-227.
[4] Aneseyee A B, Elias E, Soromessa T, et al. Land use/land cover change effect on soil erosion and sediment delivery in the Winike watershed, Omo Gibe Basin, Ethiopia[J]. Science of the Total Environment, 2020,728:138776, https://doi.org/10,1016/j.scitotenv.2020.138776.
[5] Rajbanshi J, Bhattacharya S. Assessment of soil erosion, sediment yield and basin specific controlling factors using RUSLE-SDR and PLSR approach in Konar river basin, India[J]. Journal of Hydrology, 2020,587:124935, https://doi.org/10,1016/j.jhydrol.2020.124935.
[6] Ranzi R, Le T H, Rulli M C. A RUSLE approach to model suspended sediment load in the Lo River(Vietnam):Effects of reservoirs and land use changes[J]. Journal of Hydrology, 2012,422(5):17-29.
[7] Wang S, Fu B J, Piao S L, et al. Reduced sediment transport in the Yellow River due to anthropogenic changes[J]. Nature Geoscience, 2015,9(1):38-41.
[8] Mishra K, Sinha R, Jain V, et al. Towards the assessment of sediment connectivity in a large Himalayan river basin[J]. Science of the Total Environment, 2019,661:251-265.
[9] 高常军,高晓翠,贾朋.水文连通性研究进展[J].应用与环境生物学报,2017,23(3):586-594.
[10] Mayorá G, Bautista S, Small E E, et al. Measurement of the connectivity of runoff source areas as determined by vegetation pattern and topography:A tool for assessing potential water and soil losses in drylands[J]. Water Resources Research, 2008,44(10):doi.org/10,1029/2007WR006367.
[11] Ludwig J A, Eager R W, Bastin G N, et al. A leakiness index for assessing landscape function using remote sensing[J]. Landscape Ecology, 2002,17(2):157-171.
[12] Jancewicz K, Migon P, Kasprzak M. Connectivity patterns in contrasting types of tableland sandstone relief revealed by Topographic Wetness Index[J]. Science of the Total Environment, 2019,656:1046-1062.
[13] Borselli L, Cassi P, Torri D. Prolegomena to sediment and flow connectivity in the landscape:A GIS and field numerical assessment[J]. Catena, 2008,75(3):268-277.
[14] Cavalli M, Trevisani S, Comiti F, et al. Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments[J]. Geomorphology, 2013,188:31-41.
[15] Ortíz-Rodríguez A J, Muñoz-Robles C, Borselli L. Changes in connectivity and hydrological efficiency following wildland fires in Sierra Madre Oriental, Mexico[J]. Science of the Total Environment, 2019,655:112-128.
[16] Zhao G J, Gao P, Tian P, et al. Assessing sediment connectivity and soil erosion by water in a representative catchment on the Loess Plateau, China[J]. Catena, 2020,185: doi.org/10,1016/j.catena.2019.104284.
[17] Woznicki S A, Cada P, Wickham J, et al. Sediment retention by natural landscapes in the conterminous United States[J]. Science of the Total Environment, 2020,745: doi.org/10,1016/j.scitotenv.2020.140972.
[18] 艾蕾.南水北调中线水源区典型流域土壤侵蚀与水环境特征研究[D].武汉:华中农业大学,2013.
[19] 黄萱.植被覆盖和降雨变化对流域水沙过程的影响机制:以堵河流域为例[D].武汉:华中农业大学,2019.
[20] Renard K G, Foster G R, Weeies G A. RUSLE a guide to conservation planning with the revised universal soil loss equation[R]. Usda Agricultural Handbook, 1997.
[21] 章文波,谢云,刘宝元.利用日雨量计算降雨侵蚀力的方法研究[J].地理科学,2002,22(6):705-711.
[22] Wischmeier W H, Johnson C B, Cross B V. Soil erodibility nomograph for farmland and construction sites[J]. Journal of Soil and Water Conservation, 1971,26(5):189-193.
[23] Liu B Y, Nearing M A, Risse L M. Slope gradient effects on soil loss for steep slopes[J]. Transactions of the Asae, 1994,37(6):1835-1840.
[24] Durigon V L, Carvalho D F, Antunes M A H, et al. NDVI time series for monitoring RUSLE cover management factor in a tropical watershed[J]. International Journal of Remote Sensing, 2014,35(2):441-453.
[25] Fu B J, Zhao W W, Chen L D, et al. Assessment of soil erosion at large watershed scale using RUSLE and GIS:A case study in the Loess Plateau of China[J]. Land Degradation & Development, 2005,16(1):73-85.
[26] Crema S, Cavalli M. Sed in connect: A stand-alone, free and open source tool for the assessment of sediment connectivity[J]. Computers & Geosciences, 2018,111:39-45.
[27] Vigiak O, Borselli L, Newham L T H, et al. Comparison of conceptual landscape metrics to define hillslope-scale sediment delivery ratio[J]. Geomorphology, 2012,138(1):74-88.
[28] Hassen E E, Assen M. Land use/cover dynamics and its drivers in Gelda catchment, Lake Tana watershed, Ethiopia[J]. Environmental Systems Research, 2018,6(1):1-13.
[29] Nosipho Makaya, Timothy Dube, Khoboso Seutloali, et al. Geospatial assessment of soil erosion vulnerability in the upper uMgeni catchment in KwaZulu Natal, South Africa[J]. Physics and Chemistry of the Earth, 2019,112:50-57.
[30] Yan B, Fang N F, Zhang P C, et al. Impacts of land use change on watershed streamflow and sediment yield: An assessment using hydrologic modelling and partial least squares regression[J]. Journal of Hydrology, 2013,484:26-37.
[31] 张光辉.从土壤侵蚀角度诠释泥沙连通性[J].水科学进展,2021,32(2):295-308.
[32] 袁亚男.昕水河流域土地利用与植被变化对水文连通性影响研究[M].北京:华北电力大学,2019.
[33] 王盛萍,姚安坤,赵小婵.基于人工降雨模拟试验的坡面水文连通性[J].水科学进展,2014,25(4):526-533.
Similar References:

Memo

-

Last Update: 2022-04-20

Online:11883       Total Traffic Statistics:27382688

Website Copyright: Research of Soil and Water Conservation Shaanxi ICP No.11014090-10
Tel: 029-87012705 Address: Editorial Department of Research of Soil and Water Conservation, No. 26, Xinong Road, Yangling, Shaanxi Postcode: 712100