PDF DownloadHTML ]" id="html" rel="external">HTML
[1]WANG Xueshan,SHEN Qingsong,GAO Fengjie,et al.Comparing Interpolation Methods to Predict the Spatial Distribution of Soil Available Phosphorus in the Mollisol Watershed of Northeast China[J].Research of Soil and Water Conservation,2021,28(02):33-40.
Copy

Comparing Interpolation Methods to Predict the Spatial Distribution of Soil Available Phosphorus in the Mollisol Watershed of Northeast China

References:
[1] Zhang S, Huffman T, Zhang X, et al. Spatial distribution of soil nutrient at depth in black soil of Northeast China: a case study of soil available phosphorus and total phosphorus[J]. Journal of Soil & Sediments, 2014,14(11):1775-1789.
[2] Chen M, Chen J, Sun F. Agricultural phosphorus flow and its environmental impacts in China[J]. Science of the Total Environment, 2008, 405(1/3):140-152.
[3] 张少良,马泉来,周军,等.东北黑土区小流域“林—旱—水”格局土壤磷空间分布特征研究[J].水利学报,2016,47(10):1227-1236.
[4] Liu Z, Shao M, Wang Y. Spatial patterns of soil total nitrogen and soil total phosphorus across the entire Loess Plateau region of China[J]. Geoderma,2013, 197/198:67-78.
[5] Wang Y, Zhang X, Huang C. Spatial variability of soil total nitrogen and soil total phosphorus under different land uses in a small watershed on the Loess Plateau, China[J]. Geoderma, 2009,150(1/2):141-149.
[6] 范铭丰.基于GIS的土壤养分空间变异特征及预测方法比较[D].重庆:西南大学,2010.
[7] Zhang S, Yan L, Huang J, et al. Spatial heterogeneity of soil C:N ratio in a mollisol watershed of northeast China[J]. Land Degradation & Development, 2016,27:295-304.
[8] Matheron G. Principles of geostatistics[J]. Economic Geology, 1963,58(8):1246-1266.
[9] Hengl T, Heuvelink G B M, Stein A. A generic framework for spatial prediction of soil variables based on regression-kriging[J]. Geoderma, 2004,120(1):75-93.
[10] Li Y. Can the spatial prediction of soil organic matter contents at various sampling scales be improved by using regression kriging with auxiliary information[J]. Geoderma, 2010,159(1):63-75.
[11] Zhang S, Huang Y, Shen C, et al. Spatial prediction of soil organic matter using terrain indices and categorical variables as auxiliary information[J]. Geoderma, 2012,171/172:35-43.
[12] Kumar S, Lal R, Liu D. A geographically weighted regression kriging approach for mapping soil organic carbon stock[J]. Geoderma, 2012, 189/190(6):627-634.
[13] Wang K, Zhang C, Li W. Comparison of geographically weighted regression and regression kriging for estimating the spatial distribution of soil organic matter[J]. GIScience & Remote Sensing, 2012,49(6):915-932.
[14] Brunsdon C, Fotheringham A S, Charlton M E. Geographically weighted regression: A method for exploring spatial nonstationarity[J]. Geographical Analysis, 1996, 28(4):281-298.
[15] O'Sullivan D. Geographically weighted regression: The analysis of spatially varying relationships[J]. Geographical Analysis, 2003, 35(3):272-275.
[16] 杨顺华,张海涛,郭龙,等.基于回归和地理加权回归Kriging的土壤有机质空间插值[J].应用生态学报,2015,26(6):1649-1656.
[17] 马泉来,高凤杰,张志民,等.我国东北黑土丘陵区小流域土壤有机质空间分布模拟[J].环境科学研究,2016,29(3):382-390.
[18] Liu Y, Guo L, Jiang Q, et al. Comparing geospatial techniques to predict SOC stocks[J]. Soil & Tillage Research, 2015,148:46-58.
[19] Ye H, Huang W, Huang S, et al. Effects of different sampling densities on geographically weighted regression kriging for predicting soil organic carbon[J]. Spatial Statistics, 2017,20:76-91.
[20] 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
[21] Shen Q, Wang Y, Wang X, et al. Comparing interpolation methods to predict soil total phosphorus in the mollisol area of Northeast China[J]. Catena, 2019,174:59-72.
[22] Lu G Y, Wong D W. An adaptive inverse-distance weighting spatial interpolation technique[J]. Computers and Geosciences, 2008, 34(9):1044-1055.
[23] 杨扬,杨建宇,李绍明,等.玉米生育期空间插值方法比较[J].农业工程学报,2009,25(9):163-167.
[24] Wang K, Zhang C, Li W. Predictive mapping of soil total nitrogen at a regional scale: A comparison between geographically weighted regression and cokriging[J]. Applied Geography, 2013,42(8):73-85.
Similar References:

Memo

-

Last Update: 2021-02-10

Online:11133       Total Traffic Statistics:27380285

Website Copyright: Research of Soil and Water Conservation Shaanxi ICP No.11014090-10
Tel: 029-87012705 Address: Editorial Department of Research of Soil and Water Conservation, No. 26, Xinong Road, Yangling, Shaanxi Postcode: 712100