PDF DownloadHTML ]" id="html" rel="external">HTML
[1]WANG Jia,FENG Xiaomiao,MI Shuzhen,et al.Influence of Elevated CO2 and Precipitation Regimes on the Characteristics of Photosynthesis and C, N of Wheat[J].Research of Soil and Water Conservation,2020,27(01):328-334,339.
Copy

Influence of Elevated CO2 and Precipitation Regimes on the Characteristics of Photosynthesis and C, N of Wheat

References:
[1] Xu Z, Shimizu H, Ito S, et al. Effects of elevated CO2, warming and precipitation change on plant growth, photosynthesis and peroxidation in dominant species from North China grassland[J]. Planta, 2014,239(2):421-435.
[2] Reyes-Fox M, Steltzer H, Trlica M J, et al. Elevated CO2 further lengthens growing season under warming conditions[J]. Nature, 2014,510(7504):259-262.
[3] 白莉萍,周广胜.小麦对大气CO2浓度及温度升高的响应与适应研究进展[J].中国生态农业学报,2004,12(4):23-26.
[4] Reich P B, Hobbie S E, Lee T D. Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation[J]. Nature Geoscience, 2014,7(12):920-924.
[5] García-Palacios P, Vandegehuchte M L, Shaw E A, et al. Are there links between responses of soil microbes and ecosystem functioning to elevated CO2, N deposition and warming? A global perspective[J]. Global Change Biology, 2015,21(4):1590-1600.
[6] 尹飞虎,李晓兰,董云社,等.干旱半干旱区CO2浓度升高对生态系统的影响及碳氮耦合研究进展[J].地球科学进展,2011,26(2):235-244.
[7] 孟凡超,张佳华,郝翠,等. CO2浓度升高和不同灌溉量对东北玉米光合特性及产量的影响[J].生态学报,2015,35(7):2126-2135.
[8] 刘玉洁,陶福禄.气候变化对小麦生物量影响的概率预测和不确定性分析[J].地理学报,2012,67(3):337-345.
[9] O’leary G J, Christy B, Nuttall J, et al. Response of wheat growth, grain yield and water use to elevated CO2 under a free-air CO2 enrichment(FACE)experiment and modelling in a semi-arid environment[J]. Global Change Biology, 2015,21(7):2670-2686.
[10] Ukkola A M, Prentice I C, Keenan T F, et al. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation[J]. Nature Climate Change, 2016,6(1):75-78.
[11] 田展,刘纪远,曹明奎.气候变化对中国黄淮海农业区小麦生产影响模拟研究[J].自然资源学报,2006,21(4):598-607.
[12] Kauwe M G, Medlyn B E, Zaehle S, et al. Forest water use and water use efficiency at elevated CO2:a model-data intercomparison at two contrasting temperate forest FACE sites[J]. Global Change Biology, 2013,19(6):1759D1779.
[13] 柴如山,牛耀芳,朱丽青,等.大气CO2浓度升高对农产品品质影响的研究进展[J].应用生态学报,2011,22(10):2765-2775.
[14] Newingham B A, Vanier C H, Charlet T N, et al. No cumulative effect of 10 years of elevated CO2 on perennial plant biomass components in the Mojave Desert[J]. Global Change Biology, 2013,19(7):2168-2181.
[15] Meier I C, Pritchard S G, Brzostek E R, et al. The rhizosphere and hyphosphere differ in their impacts on carbon and nitrogen cycling in forests exposed to elevated CO2[J]. New Phytologist, 2015,205(3):1164-1174.
[16] Hasegawa T, Sakai H, Tokida T, et al. Rice cultivar responses to elevated CO2 at two free-air CO2 enrichment(FACE)sites in Japan[J]. Functional Plant Biology, 2013,40(2):148-159.
[17] Poulter B, Frank D, Ciais P, et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle[J]. Nature, 2014,509(7502):600-603.
[18] Brussaard C P D, Noordeloos A A M, Witte H, et al. Arctic microbial community dynamics influenced by elevated CO2 levels[J]. Biogeosciences,2013,10(2):719-731.
[19] Evans R D, Koyama A, Sonderegger D L, et al. Greater ecosystem carbon in the Mojave Desert after ten years exposure to elevated CO2[J]. Nature Climate Change, 2014,4(5):394-397.
[20] Cai C, Yin X, He S, et al. Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments[J]. Global Change Biology, 2016,22(2):856-874.
[21] Newton P C D, Lieffering M, Parsons A J, et al. Selective grazing modifies previously anticipated responses of plant community composition to elevated CO2 in a temperate grassland[J]. Global Change Biology, 2014,20(1):158-169.
[22] Vaughan M M, Huffaker A, Schmelz E A, et al. Effects of elevated CO2 on maize defence against mycotoxigenic Fusarium verticillioides[J]. Plant, Cell & Environment, 2014,37(12):2691-2706.
[23] Fulweiler R W, Maguire T J, Carey J C, et al. Does elevated CO2 alter silica uptake in trees[J]. Frontiers in Plant Science, 2015,5:793.
[24] Duursma R A, Gimeno T E, Boer M M, et al. Canopy leaf area of a mature evergreen Eucalyptus woodland does not respond to elevated atmospheric [CO2] but tracks water availability[J]. Global Change Biology, 2016,22(4):1666-1676.
[25] AbdElgawad H, Peshev D, Zinta G, et al. Climate extreme effects on the chemical composition of temperate grassland species under ambient and elevated CO2: a comparison of fructan and non-fructan accumulators[J]. Plos One, 2014,9(3):e92044.
[26] Mette K, Kühl S, Düdder H, et al. Stable performance of Ni catalysts in the dry reforming of methane at high temperatures for the efficient conversion of CO2 into syngas[J]. Chemcatchem., 2014,6(1):100-104.
[27] Eller F, Lambertini C, Nguyen L X, et al. Increased invasive potential of non-native Phragmites australis: elevated CO2 and temperature alleviate salinity effects on photosynthesis and growth[J]. Global Change Biology, 2014,20(2):531-543.
[28] Bauweraerts I, Wertin T M, Ameye M, et al. The effect of heat waves, elevated CO2 and low soil water availability on northern red oak(Quercus rubra L.)seedlings[J]. Global Change Biology, 2013,19(2):517-528.
[29] Eisenhauer N, Dobies T, Cesarz S, et al. Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment[J]. Proceedings of the National Academy of Sciences, 2013,110(17):6889-6894.
Similar References:

Memo

-

Last Update: 2020-02-25

Online:13857       Total Traffic Statistics:27414634

Website Copyright: Research of Soil and Water Conservation Shaanxi ICP No.11014090-10
Tel: 029-87012705 Address: Editorial Department of Research of Soil and Water Conservation, No. 26, Xinong Road, Yangling, Shaanxi Postcode: 712100