[1]WANG Siyuan,NING Jianfeng,WANG Ronghui,et al.Clay Mineral and Biochar Mixture Coated Urea Preparation and Its Nitrogen Pollution Reduction Potential[J].Research of Soil and Water Conservation,2019,26(05):151-157.
Copy

Clay Mineral and Biochar Mixture Coated Urea Preparation and Its Nitrogen Pollution Reduction Potential

References:
[1] 秦成强.聚合物包膜尿素的制备与缓释性能研究[D].南京:南京理工大学,2006.
[2] 范菲菲,范成五,秦松.贵州农业土壤氮素流失对环境的影响及防治对策[J].环境污染与防治,2012,34(7):106-110.
[3] 胡钰.流域种植业面源氮污染监测及负荷估算:以阿什河流域为例[D].北京:中国环境科学研究院,2012.
[4] 王浩,樊小林,张华.粒径、包膜厚度及淋溶模式对控释肥氮素释放特性的影响[J].西北农林科技大学学报:自然科学版,2008,36(12):95-100.
[5] 马胜亮,王宜伦,韩燕来.包膜氮肥养分释放研究[J].河南农业大学学报,2005,39(2):158-160.
[6] 牟林,韩晓日,于成广,等.不同无机矿物应用于包膜复合肥的氮素释放特征及其评价[J].植物营养与肥料学报,2009,15(5):1179-1188.
[7] 丁述理,李钦甫.蒙脱石作为尿素缓释基质的试验研究[J].矿物学报,1998,18(1):67-72.
[8] 刘秀梅,张夫道,张树清,等.纳米级高岭土对氮、磷、钾和有机碳的吸附及解吸特性的研究[J].中国农业科学,2005,38(1):102-109.
[9] 盖霞普,刘宏斌,翟丽梅.玉米秸秆生物炭对土壤无机氮素淋失风险的影响研究[J].农业环境科学学报,2015,34(2):310-318.
[10] 武丽君,王朝旭,张峰.玉米秸秆和玉米芯生物炭对水溶液中无机氮的吸附性能[J].中国环境科学,2016,36(1):74-81.
[11] 马锋锋,赵保卫,念斌.玉米秸秆生物炭对水中氨氮的吸附特性[J].兰州交通大学学报,2015,34(1):125-130.
[12] 何绪生,张树清,佘雕,等.生物炭对土壤肥料的作用及未来研究[J].中国农学通报,2011,27(15):16-25.
[13] Zheng H, Wang Z Y, Deng X, et al. Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil[J]. Geoderma, 2013,206:32-39.
[14] Lehmann J, da Silva Jr J P, Steiner C, et al. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin:Fertilizer, manure and charcoal amendments[J]. Plant and Soil, 2003,249(2):343-357.
[15] 刘玮晶,刘烨,高晓荔,等.外源生物质炭对土壤中铵态氮素滞留效应的影响[J].农业环境科学学报,2012,31(5):962-968.
[16] 俞巧钢,陈英旭.尿素添加硝化抑制剂DMPP对稻田土壤不同形态矿质态氮的影响[J].农业环境科学学报,2011,30(7):1357-1363.
[17] 王雪薇,刘涛,褚贵新.3种硝化抑制剂抑制土壤硝化作用比较及用量研究[J].植物营养与肥料学报,2017,23(1):54-61.
[18] Xu J Z, Wei Q, Yang S H, et al. Soil degassing during watering:an overlooked soil N2O emission process[J]. Environmental Pollution, 2018,242:257-263.
[19] 潘炎烽,谢华丽,周春晖,等.吸附性矿物膨润土对肥料的控释作用初探[J].浙江工业大学学报,2006,34(4):393-397.
[20] 王彦锟,周鑫斌,徐宸,等.有机肥-膨润土-腐植酸复合调理剂对黄壤土吸附氮素的影响[J].烟草科技,2017,50(11):16-20.
[21] Wang B, Lehmann J, Hanley K, et al. Adsorption and desorption of ammonium by maple wood biochar as a function of oxidation and pH[J]. Chemosphere, 2015,138:120-126.
[22] Baik H M, Lee S Y. Colloidal stability of bentonite clay considering surface charge properties as a function of pH and ionic strength[J]. Journal of Industrial and Engineering Chemistry, 2010,16(5):837-841.
[23] Hong J Di, Keith C C. Inhibition of nitrification to mitigate nitrate leaching and nitrous oxide emissions in grazed grassland:a review[J]. Journal of Soils and Sediments, 2016,16(5):1401-1420.
[24] Bai X, Xia Z W, Guo Y L, et al. Effects of nitrification inhibitors on N2O emission from different upland agricultural soils[J]. Chinese Journal of Ecology, 2012,31(9):2319-2329.
[25] 孙祥鑫,李东坡,武志杰,等.持续施用缓/控释尿素条件下水田土壤NH3挥发与N2O排放特征[J].应用生态学报,2016,27(6):1901-1909.
[26] 俞巧钢,殷建祯,马军伟.硝化抑制剂DMPP应用的研究进展及影响因素[J].农业环境科学学报,2014,33(6):1057-1066.
[27] Weiske A, Benckiser G, Herbert T, et al. Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate(DMPP)in comparison to dicyandiamide(DCD)on nitrous oxide emissions, carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experiments[J]. Biology and Fertility of Soils, 2001,34(2):109-117.
[28] Kravchenko A N, Fry J E, Guber A K. Water absorption capacity of soil-incorporated plant leaves can affect N2O emissions and soil inorganic N concentrations[J]. Soil Biology and Biochemistry, 2018,121:113-119.
[29] Noraini M J, Peta L C, Lynette K A. Soil microbial responses to biochars varying in particle size, surface and pore properties[J]. Pedosphere, 2015,25(5):770-780.
[30] Cao T, Meng J, Liang H. Can biochar provide ammonium and nitrate to poor soils? Soil column incubation[J]. Journal of Soil Science and Plant Nutrition, 2017,17(2):253-265.
[31] Sun W J, Sun D A, Fang L, et al. Soil-water characteristics of Gaomiaozi bentonite by vapour equilibrium technique[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014,6(1):48-54.
[32] Wei Q, Xu J Z, Yang S H. Subsurface watering resulted in reduced soil N2O and CO2 emissions and their global warming potentials than surface watering[J]. Atmospheric Environment, 2018,173:248-255.
Similar References:

Memo

-

Last Update: 1900-01-01

Online:14404       Total Traffic Statistics:27419454

Website Copyright: Research of Soil and Water Conservation Shaanxi ICP No.11014090-10
Tel: 029-87012705 Address: Editorial Department of Research of Soil and Water Conservation, No. 26, Xinong Road, Yangling, Shaanxi Postcode: 712100