[1]WANG Tongtong,ZHAI Junhai,HE Huan,et al.Applicability of BP Neural Network Model and SVM Model to Predicting Soil Moisture Under incorporation of Biochar into Soils[J].Research of Soil and Water Conservation,2017,24(03):86-91.
Copy

Applicability of BP Neural Network Model and SVM Model to Predicting Soil Moisture Under incorporation of Biochar into Soils

References:
[1] 傅伯杰,杨志坚,王仰麟,等.黄土丘陵坡地土壤水分空间分布数学模型[J].中国科学:D辑,2001,31(3):185-191.
[2] 白天路,杨勤科,申佳.黄土高原丘陵沟壑小流域土壤水分垂直分布变异特征及影响因子[J].生态学杂志,2009(12):2508-2514.
[3] 刘志鹏,邵明安.黄土高原小流域土壤水分及全氮的垂直变异[J].农业工程学报,2010,26(5):71-77.
[4] 李光,应杰,刘长荣.土壤水分预测模型的研究[J].南水北调与水利科技,2010,8(4):95-98.
[5] 刘洪斌,武伟,魏朝富,等.土壤水分预测神经网络模型和时间序列模型比较研究[J].农业工程学报,2003,19(4):33-36.
[6] Downer C W, Ogden F L. Prediction of runoff and soil moistures at the watershed scale:Effects of model complexity and parameter assignment[J]. Water Resources Research, 2003,39(3):276-290.
[7] 陈天华,唐海涛.基于ARM和GPRS的远程土壤墒情监测预报系统[J].农业工程学报,2012,28(3):162-166.
[8] 许秀英,衣淑娟,黄操军.土壤含水量预报现状综述[J].农机化研究,2013,35(7):11-15.
[9] 尹健康,陈昌华,邢小军,等.基于BP神经网络的烟田土壤水分预测[J].电子科技大学学报,2010,39(6):891-895.
[10] 张强,黄生志,陈晓宏.基于支持向量机的土壤湿度模拟及预测研究[J].土壤学报,2013,50(001):59-67.
[11] Marris E. Putting the carbon back:Black is the new green[J]. Nature,2006,442(7103):624-626.
[12] Shrestha G, Traina S J, Swanston C W. Black carbon’s properties and role in the environment:a comprehensive review[J]. Sustainability, 2010,2(1):294-320.
[13] Ahmad M, Rajapaksha A U, Lim J E, et al. Biochar as a sorbent for contaminant management in soil and water:A review[J]. Chemosphere, 2014,99(3):19-33.
[14] 陈温福,张伟明,孟军.生物炭与农业环境研究回顾与展望[J].农业环境科学学报,2014,33(5):821-828.
[15] 王丹丹,郑纪勇,颜永毫,等.生物炭对宁南山区土壤持水性能影响的定位研究[J].水土保持学报,2013,27(2):101-104.
[16] Karhu K, Mattila T, Bergström I, et al. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity:Results from a short-term pilot field study[J]. Agriculture, Ecosystems & Environment, 2011,140(1):309-313.
[17] Basso A S, Miguez F E, Laird D A, et al. Assessing potential of biochar for increasing water-holding capacity of sandy soils[J]. Gcb Bioenergy, 2013, 5(2):132-143.
[18] 王彤彤,张剑,涂川,等.IPSO-BP神经网络在渭河天水段水质评价中的应用[J].环境科学与技术,2013,36(8):175-181.
[19] Guyon I, Weston J, Barnhill S, et al. Gene selection for cancer classification using support vector machines[J]. Machine Learning,2002,46(1/3):389-422.
[20] Support vector machines:theory and applications[M]. Springer Science & Business Media, 2005.
[21] Shahraiyni H, Ghafouri M, Shouraki S, et al. Comparison between active learning method and support vector machine for runoff modeling[J]. Journal of Hydrology and Hydromechanics,2012,60(1):16-32.
[22] Brereton R G, Lloyd G R. Support vector machines for classification and regression[J]. Analyst, 2010, 135(2):230-267.
[23] 张兰影,庞博,徐宗学,等.基于支持向量机的石羊河流域径流模拟适用性评价[J].干旱区资源与环境,2013,27(7):113-118.
[24] 丁铁山,董汝瑞,温季.基于支持向量机理论的土壤水分预测模型研究[J].人民黄河,2011,33(3):68-73.
[25] 王慧勤,雷刚.基于LIBSVM的风速预测方法研究[J].科学技术与工程,2011,11(22):5440-5442.
[26] Chang C C, Lin C J. LIBSVM:a library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology,2011,2(3):389-396.
[27] Chih-Chung Chang and Chih-Jen Lin. LIBSVM -A Library for Support Vector Machines[EB/OL]. http://www.csie.ntu.edu.tw/-cjlin/libsvm/index.html, 2015-12-14.
[28] 王彤彤,吴旺旺,张小平,等.甘肃省能源利用碳足迹估算与分析[J].湖北农业科学,2016,55(2):349-353.
[29] Gill M K, Asefa T, Kemblowski M W, et al. Soil moisture prediction using support vector machines1[J]. Journal of the American Water Resources Association,2006,42(4):1033-1046.
[30] 聂春燕,胡克林,邵元海,等.基于支持向量机和神经网络的土壤水力学参数预测效果比较[J].中国农业大学学报,2010(6):102-107.
Similar References:

Memo

-

Last Update: 1900-01-01

Online:652       Total Traffic Statistics:27342961

Website Copyright: Research of Soil and Water Conservation Shaanxi ICP No.11014090-10
Tel: 029-87012705 Address: Editorial Department of Research of Soil and Water Conservation, No. 26, Xinong Road, Yangling, Shaanxi Postcode: 712100