[1]Ji Jingjing,Bai Liying,She Dongli,et al.Comparative Study on Retrieval Model of Dissolved N2O Concentration in Drainage Ditch Based on GF-1 Satellite Remote Sensing[J].Research of Soil and Water Conservation,2024,31(05):257-264.[doi:10.13869/j.cnki.rswc.2024.05.035]
Copy

Comparative Study on Retrieval Model of Dissolved N2O Concentration in Drainage Ditch Based on GF-1 Satellite Remote Sensing

References:
[1]谭永洁,王东启,周立旻,等.河流氧化亚氮产生和排放研究综述[J].地球与环境,2015,43(1):123-132.
Tan Y J, Wang D Q, Zhou L M, et al. Review on the production and emission of nitrous oxide from rivers[J]. Earth and Environment, 2015,43(1):123-132.
[2]王安吉,马文林,吴建繁,等.2015—2019年北京市农业氧化亚氮排放变化与分析[J].中国农业资源与区划,2023,44(1):47-56.
Wang A J, Ma W L, Wu J F, et al. Changes and analysis of agricultural nitrous oxide emission in Beijing from 2015 to 2019[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2023,44(1):47-56.
[3]赵松,侯毅凯,张安兵,等.基于无人机多光谱影像的滏阳河水质遥感反演[J].测绘与空间地理信息,2022,45(3):81-85.
Zhao S, Hou Y K, Zhang A B, et al. Remote sensing inversion of water quality of Fuyang River based on UAV multi-spectral images[J]. Geomatics & Spatial Information Technology, 2022,45(3):81-85.
[4]赵琳.基于长时序多光谱遥感技术的白洋淀水质演变监测分析[J].现代信息科技,2023,7(5):141-144.
Zhao L. Monitoring and analysis of water quality evolution in Baiyang lake based on long time series multispectral remote sensing technology[J]. Modern Information Technology, 2023,7(5):141-144.
[5]黄昕晰,应晗婷,夏凯,等.基于无人机多光谱影像和OPT-MPP算法的水质参数反演[J].环境科学,2020,41(8):3591-3600.
Huang X X, Ying H T, Xia K, et al. Inversion of water quality parameters based on UAV multispectral images and the OPT-MPP algorithm[J]. Environmental Science, 2020,41(8):3591-3600.
[6]祁兰兰,王金亮,农兰萍,等.基于GF-1卫星数据的洱海干季水质时空变化监测[J].人民长江,2021,52(9):24-31.
Qi L L, Wang J L, Nong L P, et al. Temporal and spatial monitoring on water quality of Erhai lake in dry season based on GF-1 satellite data[J]. Yangtze River, 2021,52(9):24-31.
[7]彭保发,陈哲夫,李建辉,等.基于GF-1影像的洞庭湖区水体水质遥感监测[J].地理研究,2018,37(9):1683-1691.
Peng B F, Chen Z F, Li J H, et al. Monitoring water quality of Dongting lake region based on GF-1 image[J]. Geographical Research, 2018,37(9):1683-1691.
[8]Lin S, Novitski L N, Qi J, et al. Landsat TM/ETM+and machine-learning algorithms for limnological studies and algal bloom management of inland lakes[J]. Journal of Applied Remote Sensing, 2018,12(2):1-17.
[9]Chang N B, Xuan Z M, Yang Y J. Exploring spatiotemporal patterns of phosphorus concentrations in a coastal bay with MODIS images and machine learning models[J]. Remote Sensing of Environment, 2013,134:100-110.
[10]Zheng Z B, Li Y M, Guo Y L, et al. Landsat-based long-term monitoring of total suspended matter concentration pattern change in the wet season for Dongting lake, China[J]. Remote Sensing, 2015,7:13975-13999.
[11]Xiao X, Xu J, Hu C F, et al. Assessment of water quality in natural river based on HJ1A/1B CCD multi-spectral remote sensing data[C]//Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques and Applications V. Beijing, China. Spie,2014,9263:270-283.
[12]刘梅,马启良,原居林,等.基于无人机高光谱遥感技术对内陆养殖池塘水质监测的研究[J].海洋与湖沼,2022,53(1):195-205.
Liu M, Ma Q L, Yuan J L, et al. Water quality monitoring of inland aquaculture ponds based on UAV hyperspectral remote sensing technology[J]. Oceanologia Et Limnologia, 2022,53(1):195-205.
[13]魏艳芳.青铜峡灌区排水沟农业非点源污染物分布特征及贡献率研究[D].银川:宁夏大学,2019.
Wei Y F. Study on conventional pollution transport in drainage ditch of Qingtongxia irrigation area and its contribution rate to drainage ditch[D]. Yinchuan:Ningxia University, 2019.
[14]Xia Y Q, Li Y F, Ti C P, et al. Is indirect N2O emission a significant contributor to the agricultural greenhouse gas budget:A case study of a rice paddy-dominated agricultural watershed in Eastern China[J]. Atmospheric Environment, 2013,77:943-950.
[15]Miyashiro R, Takano Y. Mixed integer second-order cone programming formulations for variable selection in linear regression[J]. European Journal of Operational Research, 2015,247(3):721-731.
[16]Liu G, Wu M Q, Niu Z, et al. Investigation method for crop area using remote sensing sampling based on GF-1 satellite data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(5):160-166.
[17]姚一飞,王爽,张珺锐,等.基于GF-1卫星遥感的河套灌区土壤含水率反演模型研究[J].农业机械学报,2022,53(9):239-251.
Yao Y F, Wang S, Zhang J R, et al. Inversion model of soil moisture in Hetao irrigation district based on GF-1 satellite remote sensing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022,53(9):239-251.
[18]Qin X H, Zheng L L. Mathematical models for analysis of water pollution[J]. Applied Mechanics and Materials, 2012, 209:1941-1947.
[19]Liu K L, Lin T, Zhong T T, et al. New methods based on a genetic algorithm back propagation(GABP)neural network and general regression neural network(GRNN)for predicting the occurrence of trihalomethanes in tap water[J]. Science of the Total Environment, 2023,870:161976.
[20]冯汉中,杨淑群,刘波.支持向量机(SVM)方法在气象预报中的个例试验[J].四川气象,2005,25(2):9-12.
Feng H Z, Yang S Q, Liu B. A case study of support vector machine(SVM)method in meteorological forecast[J]. Journal of Sichuan Meteorology, 2005,25(2):9-12.
[21]Okcu D, Pektas A O, Uyumaz A. Creating a non-linear total sediment load formula using polynomial best subset regression model[J]. Journal of Hydrology, 2016,539:662-673.
[22]张智韬,韩佳,王新涛,等.基于全子集-分位数回归的土壤含盐量反演研究[J].农业机械学报,2019,50(10):142-152.
Zhang Z T, Han J, Wang X T, et al. Soil salinity inversion based on best subsets-quantile regression model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019,50(10):142-152.
[23]祝令亚.湖泊水质遥感监测与评价方法研究[D].北京:中国科学院遥感应用研究所,2006.
Zhu L Y. Remote sensing monitoring and assessment of water quality for lakes[D]. Beijing:Institute of Remote Sensing Applications, Chinese Academy of Sciences, 2006.
[24]徐红敏.基于支持向量机理论的水环境质量预测与评价方法研究[D].长春:吉林大学,2007.
Xu H M. Study on the prediction and assessment methods of water environment quality based on support vector machines theory[D]. Changchun:Jilin University, 2007.
[25]徐敏.基于复杂性理论的河湖环境系统模型研究[D].长沙:湖南大学,2007.
Xu M. Research of water environmental system models based oncomplexity theory[D]. Changsha:Hunan University, 2007.
[26]王渤权,金传鑫,周论,等.基于长短期记忆网络的西丽水库水质预测[J].长江科学院院报,2023,40(6):64-70.
Wang B Q, Jin C X, Zhou L, et al. Water quality prediction for Xili reservoir based on long-short term memory[J]. Journal of Changjiang River Scientific Research Institute, 2023,40(6):64-70.
Similar References:

Memo

-

Last Update: 2024-08-10

Online:1105       Total Traffic Statistics:27491004

Website Copyright: Research of Soil and Water Conservation Shaanxi ICP No.11014090-10
Tel: 029-87012705 Address: Editorial Department of Research of Soil and Water Conservation, No. 26, Xinong Road, Yangling, Shaanxi Postcode: 712100