[1]Yuan Ke,Zhang Chen,Zhao Jianlin,et al.Comparative Analysis on Models for Predicting the Spatial Distribution of Soil Organic Carbon Density with Limited Samples[J].Research of Soil and Water Conservation,2024,31(05):173-181,191.[doi:10.13869/j.cnki.rswc.2024.05.041]
Copy

Comparative Analysis on Models for Predicting the Spatial Distribution of Soil Organic Carbon Density with Limited Samples

References:
[1]Li X H, Ding J L, Liu J, et al. Digital mapping of soil organic carbon using sentinel series data:A case study of the ebinur lake watershed in Xinjiang[J]. Remote Sensing, 2021,13(4):769.
[2]马海丽.黄河源区土壤有机碳影响因子作用机制及模拟模型研究[D].兰州:兰州大学,2021.
Ma H L. Study on the Mechanism and Simulation Model of Soil Organic Carbon Influencing Factors in the Source Area of the Yellow River[D].Lanzhou:Lanzhou University, 2021.
[3]Piao S L, Fang J Y, Ciais P, et al. The carbon balance of terrestrial ecosystems in China[J]. Nature, 2009,458:1009-1013.
[4]Lamichhane S, Kumar L, Wilson B. Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications:A review[J]. Geoderma, 2019,352:395-413.
[5]刘艳芳,宋玉玲,郭龙,等.结合高光谱信息的土壤有机碳密度地统计模型[J].农业工程学报,2017,33(2):183-191.
Liu Y F, Song Y L, Guo L, et al. Geostatistical models of soil organic carbon density prediction based on soil hyperspectral reflectance[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(2):183-191.
[6]李妙宇.黄土高原生态系统碳储量现状及固碳潜力评估[D].北京:中国科学院大学(中国科学院教育部水土保持与生态环境研究中心),2021.
Li M Y. Carbon Storages and Carbon Sequestration Potentials of the Terrestrial Ecosystems on the Loess Plateau[D].Beijing:Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 2021.
[7]丁亚鹏,张俊华,刘玉寒,等.基于GWR模型的伊河流域土壤有机碳空间分布特征及影响因素分析[J].生态学报,2021,41(12):4876-4885.
Ding Y P, Zhang J H, Liu Y H, et al. Spatial distribution characteristics and influencing factors of soil organic carbon in Yihe River Basin based on GWR model[J]. Acta Ecologica Sinica, 2021,41(12):4876-4885.
[8]魏宇宸,卢晓丽,朱昌达,等.基于地形与遥感辅助信息的小流域尺度高分辨率有机碳空间分布预测研究[J].土壤学报,2023,60(1):63-76.
Wei Y C, Lu X L, Zhu C D, et al. High-resolution digital mapping of soil organic carbon at small watershed scale using landform element classification and assisted remote sensing information[J]. Acta Pedologica Sinica, 2023,60(1):63-76.
[9]Odebiri O, Mutanga O, Odindi J. Deep learning-based national scale soil organic carbon mapping with Sentinel-3 data[J]. Geoderma, 2022,411:115695.
[10]Xu L, Yu G R, He N P, et al. Carbon storage in China's terrestrial ecosystems:A synthesis[J]. Scientific Reports, 2018,8:2806.
[11]Sothe C, Gonsamo A, Arabian J, et al. Large scale mapping of soil organic carbon concentration with 3D machine learning and satellite observations[J]. Geoderma, 2022,405:115402.
[12]杜雪,王海燕.中国森林土壤有机碳活性组分及其影响因素[J].世界林业研究,2022,35(1):76-81.
Du X, Wang H Y. Active components of forest soil organic carbon and its influencing factors in China[J]. World Forestry Research, 2022,35(1):76-81.
[13]赵青,刘爽,陈凯,等.武夷山自然保护区不同海拔甜槠天然林土壤有机碳变化特征及影响因素[J].生态学报,2021,41(13):5328-5339.
Zhao Q, Liu S, Chen K, et al. Change characteristics and influencing factors of soil organic carbon in Castanopsis eyrei natural forests at different altitudes in Wuyishan Nature Reserve[J]. Acta Ecologica Sinica, 2021,41(13):5328-5339.
[14]Breiman L. Random forests[J]. Machine Learning, 2001,45(1):5-32.
[15]韩杏杏,陈杰,王海洋,等.基于随机森林模型的耕地表层土壤有机质含量空间预测①:以河南省辉县市为例[J].土壤,2019,51(1):152-159.
Han X X, Chen J, Wang H Y, et al. Spatial prediction of SOM content in topsoil based on random forest algorithm:A case study of Huixian city, Henan Province[J]. Soils, 2019,51(1):152-159.
[16]Liaw A, Wiener M. Classification and regression by RandomForests[J]. R News, 2002,2(3):18-22.
[17]刘尊方,雷浩川,盛海彦.基于XGBoost模型的湟水流域耕地土壤养分遥感反演[J].干旱区地理,2023,46(10):1643-1653.
Liu Z F, Lei H C, Sheng H Y. Remote sensing inversion of soil nutrient on farmland in Huangshui River Basin based on XGBoost model[J]. Arid Land Geography, 2023,46(10):1643-1653.
[18]叶淼,朱琳,刘旭东,等.基于连续小波变换、SHAP和XGBoost的土壤有机质含量高光谱反演[J/OL].环境科学:1-19[2024-02-18].
Ye M, Zhu L, Liu X D, et al. Hyperspectral inversion of soil organic matter content based on continuous wavelet transform, SHAP, and XGBoost[J/OL]. Environmental Science:1-19[2024-02-18].
[19]傅贵,韩国强,逯峰,等.基于支持向量机回归的短时交通流预测模型[J].华南理工大学学报:自然科学版,2013,41(9):71-76.
Fu G, Han G Q, Lu F, et al. Short-term traffic flow forecasting model based on support vector machine regression[J]. Journal of South China University of Technology(Natural Science Edition), 2013,41(9):71-76.
[20]沈飞龙.基于机器学习与光谱信息的土壤铁氧化物估算模型研究[D].武汉:华中农业大学,2022.
Shen F L. A Model for Soil Iron Oxides Estimation Based on Machine Learning and Spectral Information[D].Wuhan:Huazhong Agricultural University, 2022.
[21]Zhao J L, Vanmaercke M, Chen L Q, et al. Vegetation cover and topography rather than human disturbance control gully density and sediment production on the Chinese Loess Plateau[J]. Geomorphology, 2016,274:92-105.
[22]丁倩,张弛.基于地理探测器的中国陆地生态系统土壤有机碳空间异质性影响因子分析[J].生态环境学报,2021,30(1):19-28.
Ding Q, Zhang C. Influential factors analysis for spatial heterogeneity of soil organic carbon in Chinese terrestrial ecosystem with geographical detector[J]. Ecology and Environmental Sciences, 2021,30(1):19-28.
[23]国佳欣,朱青,赵小敏,等.不同土地利用类型下土壤有机碳含量的高光谱反演[J].应用生态学报,2020,31(3):863-871.
Guo J X, Zhu Q, Zhao X M, et al. Hyper-spectral inversion of soil organic carbon content under different land use types[J]. Chinese Journal of Applied Ecology, 2020,31(3):863-871.
[24]李龙,秦富仓,姜丽娜,等.土地利用方式和地形对半干旱区土壤有机碳含量的影响[J].土壤,2019,51(2):406-412.
Li L, Qin F C, Jiang L N, et al. Effects of land use type and terrain on soil organic carbon(SOC)content in semi-arid region[J]. Soils, 2019,51(2):406-412.
[25]唐海涛,孟祥添,苏循新,等.基于CARS算法的不同类型土壤有机质高光谱预测[J].农业工程学报,2021,37(2):105-113.
Tang H T, Meng X T, Su X X, et al. Hyperspectral prediction on soil organic matter of different types using CARS algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021,37(2):105-113.
[26]王富华,黄容,高明,等.生物质炭与秸秆配施对紫色土团聚体中有机碳含量的影响[J].土壤学报,2019,56(4):929-939.
Wang F H, Huang R, Gao M, et al. Effect of combined application of biochar and straw on organic carbon content in purple soil aggregates[J]. Acta Pedologica Sinica, 2019,56(4):929-939.
[27]张祎,李鹏,肖列,等.黄土高原丘陵区地形和土地利用对土壤有机碳的影响[J].土壤学报,2019,56(5):1140-1150.
Zhang Y, Li P, Xiao L, et al. Effects of topography and land use on soil organic carbon in hilly region of Loess Plateau[J]. Acta Pedologica Sinica, 2019,56(5):1140-1150.
[28]郭治兴,袁宇志,郭颖,等.基于地形因子的土壤有机碳最优估算模型[J].土壤学报,2017,54(2):331-343.
Guo Z X, Yuan Y Z, Guo Y, et al. Optimal estimation model of soil organic carbon based on the terrain factor[J]. Acta Pedologica Sinica, 2017,54(2):331-343.
[29]王绍强,周成虎.中国陆地土壤有机碳库的估算[J].地理研究,1999,18(4):349-356.
Wang S Q, Zhou C H. Estimating soil carbon reservior of terrestrial ecosystem in China[J]. Geographical Research, 1999,18(4):349-356.
[30]周国模,姜培坤.不同植被恢复对侵蚀型红壤活性碳库的影响[J].水土保持学报,2004,18(6):68-70,83.
Zhou G M, Jiang P K. Changes in active organic carbon of erosion red soil by vegetation recovery[J]. Journal of Soil Water Conservation, 2004,18(6):68-70,83.
Similar References:

Memo

-

Last Update: 2024-08-10

Online:905       Total Traffic Statistics:27490214

Website Copyright: Research of Soil and Water Conservation Shaanxi ICP No.11014090-10
Tel: 029-87012705 Address: Editorial Department of Research of Soil and Water Conservation, No. 26, Xinong Road, Yangling, Shaanxi Postcode: 712100