[1]AN Xiang,CHEN Yunming,TANG Yakun.Factors Affecting the Spatial Variation of Carbon Use Efficiency and Carbon Fluxes in East Asian Forest and Grassland[J].Research of Soil and Water Conservation,2017,24(05):79-87,92.
Copy
Research of Soil and Water Conservation[ISSN 1005-3409/CN 61-1272/P] Volume:
24
Number of periods:
2017 05
Page number:
79-87,92
Column:
Public date:
2017-10-28
- Title:
-
Factors Affecting the Spatial Variation of Carbon Use Efficiency and Carbon Fluxes in East Asian Forest and Grassland
- Author(s):
-
AN Xiang1, CHEN Yunming2,3, TANG Yakun2,3
-
1. Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi 712100, China;
2. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi 712100, China;
3. Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China
-
- Keywords:
-
forest; grassland; CUE; carbon dioxide flux; eddy covariance
- CLC:
-
S718.5;X171.1
- DOI:
-
-
- Abstract:
-
Forest and grassland play an essential role in the terrestrial ecosystem. The objective of this study is to analyze the spatial variation characteristics and influence factors of carbon use efficiency (CUE), gross ecosystem production (GEP), ecosystem respiration (ER), and net ecosystem production (NEP) based on more than one year data which were obtained from 40 sites (26 forest sites, 14 grassland sites) in the East Asian region from published literatures. Forest and grassland in the East Asian region both exhibit carbon sinks, while forest showed significantly higher value than grassland (p < 0.001). The average NEP in forest and grassland in the East Asian are 328.64±256.46 gC/(m2·a) and 63.43±42.99 gC/(m2·a), respectively. The average CUE in forest and grassland are 0.21 and 0.20 in this region, CUE of forest is negatively correlated with the forest age and mean annual precipitation (MAP), respectively. The results show that GEP and ER in forest grassland linearly decrease with an increase in latitude. In addition, relationship between NEP and latitude can be described by quadratic function. There is a clear linear relationship between GEP, ER with MAP in both forest and grassland. The results also show that MAP and NEP first increase and then decrease with a quadratic function relationship, NEP is the maximum when amounts precipitation are 1 300 mm and 390 mm for forest and grassland, respectively. GEP and ER in forest show a positive relationship with mean annual temperature. Moreover, GEP and RE in both forest and grassland showed a positive linear correlation with vegetation index.