[1]ZHAO Yan-ling,HE Ting-ting,LIU Ya-ping,et al.Prediction of Cultivated Land Change of Anhui Province Based on FSA-LSSVR Model[J].Research of Soil and Water Conservation,2014,21(03):136-140.
Copy

Prediction of Cultivated Land Change of Anhui Province Based on FSA-LSSVR Model

References:
[1] 杜新波,周伟,司慧娟,等.青海省2000-2008年间耕地变化及驱动力研究[J].水土保持研究,2013,20(5):180-86.
[2] 车明亮,聂宜民,刘登民,等.区域耕地数量变化预测方法的对比研究[J].中国土地科学,2010,24(5):13-18.
[3] 赵永华,刘晓静,奥勇.陕西省耕地资源变化及耕地压力指数分析与预测[J].农业工程学报,2013,29(11):217-223.
[4] 赵海英,张明旭.基于灰色模型的耕地变化预测[J].吉林师范大学学报:自然科学版,2007,5(2):66-67.
[5] 胡喜生,洪伟,吴承祯.基于BP神经网络的福建省耕地预测模型[J].福建农林大学学报:自然科学版,2008,37(4):66-67.
[6] 黄成毅,邓良基,方从刚.基于灰色-马尔柯夫模型的区域耕地变化预测研究:以四川盆地中部丘陵区为例[J].四川师范大学学报:自然科学版,2009,32(6):816-821.
[7] 张豪,罗亦泳,张立亭,等.基于遗传算法最小二乘支持向量机的耕地变化预测[J].农业工程学报,2009,25(7):226-231.
[8] Yuan S F, Chu F L. Support vector machines-based fault diagnosis for turbo-pump rotor[J]. Mechanical Systems and Signal Processing,2006,20(4):939-952.
[9] Doumpos M, Zopounidis C, Golfinopoulou V. Additive support vector machines for pattern classification[J]. Systems, Man, and Cybernetics, Part B:Cybernetics, IEEE Transactions on,2007,37(3):540-550.
[10] Khemchandani R, Chandra S. Twin support vector machines for pattern classification[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2007,29(5):905-910.
[11] Wu Z, Li C, Ng J K Y, et al. Location estimation via support vector regression[J]. Mobile Computing, IEEE Transactions on, 2007,6(3):311-321.
[12] Hao P Y, Chiang J H. Fuzzy regression analysis by support vector learning approach[J]. Fuzzy Systems, IEEE Transactions on,2008,16(2):428-441.
[13] Suyken J A K, Vandewalle J. Least squares support vector machine classifiers[J].Neural Processing Letters,1999,9(3):293-300.
[14] Van Gestel T, Suykens J A K, Baesens B, et al. Benchmarking least squares support vector machine classifiers[J]. Machine Learning,2004,54(1):5-32.
[15] Anguita D, Boni A. Digital least squares support vector machines[J]. Neural processing Letters,2003,18(1):65-72.
[16] Tsujinishi D, Abe S. Fuzzy least squares support vector machines for multiclass problems[J]. Neural Networks,2003,16(5):785-792.
[17] Vapnik V N. Statistical learning theory[M]. New York:Wiley,1998.
[18] 朱家元,段宝君,张恒喜.新型SVM对时间序列预测研究[J].计算机科学,2003,30(8):124-125.
[19] 彭珍瑞,孟建军,祝磊,等.基于支持向量机的铁路客运量的预测[J].辽宁工程技术大学学报,2007,26(2):269-272.
[20] 朱家元,陈开陶,张恒喜.最小二乘支持向量机算法研究[J].计算机科学,2003,30(7):157-159.
[21] 李波,徐宝松,武金坤,等.基于最小二乘支持向量机的大坝力学参数反演[J].岩土工程学报,2008,30(11):1722-1725.
[22] 李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法[J].系统工程理论与实践,2002,22(11):32-38.
[23] 周利民.基于鱼群算法的无线传感器网络覆盖优化研究[D].长沙:湖南大学,2010.
[24] 杨淑霞,韩奇,徐琳茜,等.鱼群算法与神经网络结合的节能减排效果评价[J].中南大学学报:自然科学版,2012,43(4):1538-1544.
[25] 赵永华,何兴元,胡远满,等.岷江上游汶川县耕地变化及驱动力研究[J].农业工程学报,2006,22(2):94-97.
[26] 李伟,郝晋珉,冯婷婷,等.基于计量经济模型的中国耕地数量变化政策与资产因素分析[J].农业工程学报,2008,24(6):115-118.
[27] 刘文智,陈亚恒,李新旺.基于产能的耕地整理数量质量潜力测算方法研究:以河北省卢龙县为例[J].水土保持研究,2010,17(3):227-231.
[28] 林建平,赵小敏,邓爱珍,等.城镇建设用地规模影响因素分析及预测:以江西省广丰县为例[J].国土资源科技管理,2008,25(2):102-106.
Similar References:

Memo

-

Last Update: 1900-01-01

Online:11551       Total Traffic Statistics:27385847

Website Copyright: Research of Soil and Water Conservation Shaanxi ICP No.11014090-10
Tel: 029-87012705 Address: Editorial Department of Research of Soil and Water Conservation, No. 26, Xinong Road, Yangling, Shaanxi Postcode: 712100