2.1 不同人工林地土壤容重、孔隙度的差异
土壤容重和孔隙度代表土壤的松紧程度及孔隙状况,是土壤物理性质的重要指标。由图1可以看出:在0—30 cm土层,不同林地土壤容重在1.02~1.23 g/cm3变化,不同林地同一土层间土壤容重差异显著(p<0.05)。表土层0—10 cm土壤容重的排序为:山桃林(1.13 g/cm3)>山杏林(1.09 g/cm3)>山杏×沙棘林(1.08 g/cm3)>山杏×柠条林(1.02 g/cm3),下层10—30 cm土壤容重的排序为:山杏×沙棘林(1.21 g/cm3)>山杏林(1.20 g/cm3)>山杏×柠条林(1.14 g/cm3)>山桃林(1.12 g/cm3),可以看出混交林对表层土壤容重的改善明显优于纯林,尤其是山杏柠条混交林,下层10—30 cm的土壤容重也明显低于山杏纯林。在垂直剖面上,各林地表层0—10 cm土壤容重明显小于10—30 cm土层,10—20 cm和20—30 cm土层土壤容重同一林地差异均不显著(p<0.01)。0—30 cm土层除了山桃林外,土壤容重随着土层深度的增加总体呈现递增的趋势。
在0—30 cm土层,不同林地土壤总孔隙度在52.51%~61.63%变化,土壤毛管孔隙度在40.39%~46.69%变化,土壤非毛管孔隙度在7.91%~17.80%变化。不同林地同一土层间土壤总孔隙度、毛管孔隙度和非毛管孔隙度存在显著差异(p<0.05)。表土层0—10 cm土壤总孔隙的排序为:山杏×柠条林(61.63%)>山杏×沙棘林(59.99%)>山杏林(58.06%)>山桃林(57.26%),下层10—30 cm土壤总孔隙度的排序为:山杏×柠条林(56.46%)>山杏林(55.50%)>山桃林(54%)>山杏×沙棘林(53.18%),与土壤容重的变化顺序基本相反。在垂直剖面上,表土层0—10 cm的土壤总孔隙度明显高于下层10—30 cm,整个土层0—30 cm土壤总孔隙度基本上是随着土层深度的加深呈现递减的趋势。10—20 cm和20—30 cm土层土壤总孔隙度的变化差异各林地均不显著(p<0.01)。土壤毛管孔隙度0—30 cm土层排序基本为:山杏×柠条林(46.59%)>山杏林(44.23%)>山杏×沙棘林(43.11%)>山桃林(41.56%),土壤非毛管孔隙度排序基本为:山桃林(13.84%)>山杏林(13.20%)>山杏×沙棘林(12.13%)>山杏×柠条林(11.31%)。
总体可以看出,不同林地表层0—10 cm土壤结构松散,土壤容重较小,土壤总孔隙度和毛管孔隙度较大,说明混交林对表层土壤改善的优势明显,尤其是山杏柠条混交林地,土壤结构得到较大程度的改善。但是下层10—20 cm和20—30 cm土层变化差异不是很显著。
2.2 不同人工林地土壤持水性能差异
土壤水分是土壤中营养循环流动与物质转化的载体,对不同林分类型土壤蓄水能力的研究有助于了解不同林分类型的森林土壤保水性能[14]。由图2可以看出,不同林地土壤饱和持水量在42%~61.87%变化,0—30 cm土层土壤饱和持水量存在显著差异(p<0.05)。不同林地0—10 cm土壤饱和持水量的排序为:山杏×沙棘林>山杏林>山杏×柠条林>山桃林。在垂直剖面上,表土层0—10 cm土壤饱和持水量均显著高于10—30 cm土层,整个土层0—30 cm土壤饱和持水量基本上是随着土层深度的加深,土壤饱和持水量呈现减少的趋势,且差异极显著(p<0.01)。10—20 cm和20—30 cm土层土壤饱和持水量的变化差异各林地均不显著(p>0.05)。
不同林地土壤毛管持水量在35.92%~45.77%变化。不同林地0—30 cm土层土壤毛管持水量存在显著差异(p<0.05)。不同林地0—10 cm土壤毛管持水量的排序为:山杏×柠条林>山杏林>山杏×沙棘林>山桃林。在垂直剖面上,表土层0—10 cm土壤毛管持水量基本上显著高于10—30 cm土层,整个土层0—30 cm土壤毛管持水量基本上是随着土层深度的加深呈现减少的趋势,且差异极显著(p<0.01)。10—20 cm和20—30 cm土层土壤毛管持水量的变化差异各林地变化均不显著(p>0.05)。
不同林地土壤田间持水量在25.92%~31.63%变化。不同林地0—30 cm土层土壤田间持水量存在显著差异(p<0.05)。不同林地0—10 cm土壤田间持水量的排序为:山杏×柠条林>山杏林>山杏×沙棘林>山桃林。在垂直剖面上,表土层0—10 cm土壤田间持水量均显著高于10—30 cm土层,10—20 cm和20—30 cm土层土壤田间持水量的变化差异除了山桃林差异极显著(p<0.01)外,其他林地变化均不显著(p>0.05)。
总体可以看出,在0—30 cm土层,不同林分在土壤垂直剖面分层上持水能力大部分存在显著差异(p<0.01)。土壤饱和持水量、土壤毛管持水量和土壤田间持水量的最大值基本都出现在0—10 cm表层土壤,下层10—30 cm土层各林地持水量的变化不显著。另外,在0—10 cm土层,山杏×柠条混交林的土壤饱和持水量、毛管持水量与田间持水量都与其他3种林分类型差异显著(p<0.05),土壤毛管持水量和田间持水量的大小排序均为山杏×柠条林>山杏林>山杏×沙棘林>山桃林。
2.3 不同人工林地土壤抗冲性能
土壤抗冲性是表征土壤抵抗外营力机械破坏能力的指标之一,反映特定状态下土壤在水蚀环境中的流失情况。由于土壤的冲刷主要集中在表层土壤,本研究对土壤抗冲性的分析主要为表层土壤(0—30 cm)。由图3可以看出,在表土层0—10 cm,从不同人工林土壤泥沙冲刷量变化可以看出,泥沙量最大的是山桃林,达到13.38 g,其次是山杏林,山杏沙棘林,分别为3.23 g,2.04 g,山杏柠条林最低为,为1.2 g,说明混交林在0—10 cm的土层中冲刷量要明显低于纯林。另外从图3中,也可以看出在0—10 cm土层,抗冲系数和抗冲耗能的变化规律刚好与泥沙量相反,混交林的抗冲系数和抗冲耗能明显的要高于纯林。说明泥沙冲刷量越小,土壤抗冲性能越高。在0—10 cm土层,抗冲系数最大的是山杏柠条混交林,达到52.34(L·min)/g,其次是山杏沙棘林、山杏林、山桃林,分别为40.93(L·min)/g,31.49(L·min)/g,9.73(L·min)/g; 在0—10 cm土层,抗冲耗能最大的也是山杏柠条混交林,达到16.13 J/g,其次是山杏沙棘林、山杏林、山桃林,分别为10.30 J/g,5.31 J/g,1.09 J/g。另外,从表2不同人工林的变异数可以看出,表土层0—10 cm的土壤泥沙量、土壤抗冲系数和抗冲耗能的变异系数变异性极大,泥沙量变异数最高为1.22,最低为0.54; 抗冲系数的变异性最高达到1.55,最低为0.70; 抗冲耗能变异系数最高达到1.57,最低为0.66。从统计学上,这时的平均值所具有的代表性意义不是很大。方差分析也表明,不同林地在0—10 cm土层不在显著差异(p<0.05)。
在10—20 cm和20—30 cm土层,不同人工林地的土壤泥沙量、土壤抗冲系数和土壤抗冲耗能的变化规律基本是一致的。在垂直剖面,土壤泥沙量随着土层深度的增加总体呈现出递增趋势(除山桃林外),抗冲系数和抗冲耗能随着土层深度的增加总体呈现递减趋势。
2.4 不同林分类型土壤水文物理指标及抗冲性的相关性分析
本文采用Person相关系数描述各指标间的相关分析,由表3可以看出,土壤容重与土壤总孔隙度、毛管持水量、田间持水量、抗冲系数均呈现极显著的负相关,其中以土壤容重与土壤总孔隙度的相关性最好,相关系数为-0.813; 土壤总孔隙度与土壤田间持水量、抗冲系数呈现极显著的正相关关系,与最大持水量、毛管持水量、非毛管孔隙度呈现显著的正相关关系,毛管孔隙度与毛管持水量呈现极显著的正相关关系,非毛管孔隙度与最大持水量呈现极显著的正相关关系,毛管持水量、田间持水量均与抗冲系数呈现极显著正相关关系,与其他学者研究结果一致[15]。反映出土壤总孔隙度与非毛管孔隙度越大,土壤的最大持水量越高,则土壤的持水性能越好,土壤的抗冲性能就越强。
图3 不同人工林地0-30 cm土层土壤抗冲指标变化