旱地长期轮作施肥对土壤肥力影响的定位研究

樊 军1,2, 郝明德1, 王永功1,2

摘 要: 对设在黄土高原旱作农耕地上的两个长期定位试验进行研究, 主要就不同施肥量、不同肥料配比、不同作物与不同轮作方式对土壤有机 C、全 N、有效 P 含量及苜蓿、小麦与玉米连作条件下土壤剖面三种养分含量分布进行研究。结果表明, 长期施用化肥提高土壤有机 C 含量,幅度在 2.3% \sim 13.53%,对全 N 影响不大,施 P 显著提高土壤有效 P 的含量,每年单独施 P_2O_5 180 kg/hm²,土壤有效 P 增加到 55. 11 mg/kg,是试验前的 12 倍;不同施肥连作条件下,土壤有机 C、全 N 因施有机肥而有显著提高,单施化肥对有机 C、全 N 影响不大,施肥相同不同作物轮作处理之间的有机 C、全 N、有效 P 差别不明显;苜蓿连作不同施肥处理之间土壤剖面全 N、有效 P 含量分布差别明显,NPM、P 处理剖面 $20\sim100$ cm 土层全 N 含量高于 CK,而有效 P 分布在 P0P00 cm 土层之间为 P00 cm 土层全 P100 cm 表,以外外,小麦,玉米、苜蓿对土壤 P10P100 cm 影响不同,苜蓿处理 P100 cm 土层养分含量低于玉米与小麦,试验结果表明土壤有机 P100 cm 是一个100 cm 土层养分含量低于玉米与小麦,试验结果表明土壤有机 P100 cm 表,一个100 cm 土层养分含量低于玉米与小麦,试验结果表明土壤有机 P100 cm 表。

关键词:长期定位试验;轮作施肥;施肥量;土壤养分

中图分类号: S 158.3 文献标识码: A 文章编号: 1005-3409(2003) 01-0031-06

Effects of Rotations and Fertilizations on Soil Fertility on Upland of Loes Plateau

FAN Jun^{1, 2}, HAO Ming-de¹, WANG Yong-gong^{1, 2}

(1. Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, Shaanxi, China; 2. Northwestern Sci-tech University of Agriculture and Forestry, Yangling 712100 Shaanxi, China)

Abstract: It was studied that fertilization, crop type and planting ways affected soil soil total organic carbon, total nitrogen and available phosphorus content accrding to data of a long term experiment. Long term fertilization and planting increased the content of soil total organic carbon, total nitrogen and available phosphorus content. Especially, solely application of phosphorus chemical fertilizer can enhance available phosphorus significantly. The nutrient content of soil profile affected by planting alfalfa, there was the positive correlation between soil total organic carbon content and the yield of winter wheat.

Key words: long-term experiment; rotation and fertilization; fertilization amount; soil nutrient

长期施化肥并种植单一作物可以获得持续高产,而且化肥并不破坏土壤,这已被国外众多长期肥料试验所证实[1]。因为我国幅员辽阔,气候条件相差甚远,试验条件与种植作物不同,但从已有的报道来看试验大部分种植当地主要作物,试验处理为氮磷化肥与有机肥的组合,部分试验有钾肥、秸秆、绿肥等处理[3,4],所得出的结论与国外大都一致,同时也有各自的地域特点,对指导我国农业生产有重要意义,而对未来主要施用化肥条件下如何保持与提高土壤肥力的途径未设置适当处理进行长期研究,随着我国农业生产与化肥工业的不断发展,这一问题越显重要。

从 1984 年开始水土保持研究所在渭北旱塬设置了两个定位试验, 研究土壤培肥途径、不同肥料用量及配比的增产效应及对土壤肥力的影响, 本文就 15 年后试验处理土壤有机 C、全 N、有效 P 的差异进行分析, 为旱地土壤培肥增产提供理论依据。

□ 研究方法

1.1 试验概况

试验区位于黄土高原中南部陕西省长武县十里铺村无灌溉条件的塬面旱地上,多年平均气温 9.1℃,无霜期 171

d。多年平均年降水量为584 mm,季节性分布不均,7~9月 降水量占全年降水量的55%。供试土壤为黄盖黑垆土,耕层

土壤有机 C 含量为6.50 g/kg,全 N 含量为 0.80 g/kg,土壤

碱解 N 含量 37 mg/kg, 有效 P 含量为 4.58 mg/kg, pH (H₂O)为 8. 24。土壤肥力水平较低, K 素丰富, N、P 俱缺。

当地主要作物为小麦,是人们主食用粮和经济来源之

一,种植面积占粮食作物的50%以上。玉米也是当地的主要 粮食作物,种植面积仅次于小麦,苜蓿是当地的饲养牧草。

1.2 试验设计

(1)轮作培肥试验, 试验开始于 1984年, 共 36 个处理, 108 个小区, 小区面积 66.67 m², 均为 3次重复, 采用顺序排 列法进行排列。本研究选取 27 个处理进行研究, 苜蓿连作施

肥 3 个处理(CK、P、NPM)、小麦连作施肥 8 个处理(CK、P、

M、PM、NM、NP、N、NPM)、玉米连作施肥处理1个

(NPM); 粮草长周期 8年轮作(苜蓿-苜蓿-苜蓿-苜蓿-

马铃薯- 小麦- 小麦- 小麦+ 苜蓿)8个处理(选择3个)、

粮草短周期 3 年轮作(红豆草- 小麦- 小麦+ 红豆草) 3 个 处理、粮豆3年轮作(豌豆-小麦-小麦+糜子)3个处理、

粮豆轮作施肥 4 个处理(CK、P、NP、NPM), NP 处理与粮豆 3 年轮作相同、粮饲(玉米- 小麦- 小麦+ 糜子)轮作施肥 2

个处理(NPM、NP),轮作试验各轮作系统施肥量相同(NP)。

所有处理每年施 N(尿素) 为纯氮 120 kg/hm², P(过磷酸钙) 为 P₂O₅60 kg/hm², M 为厩肥 75 t/hm², 所有肥料在播种时

一次性施入土中,田间管理同大田。休闲地处理1个,进行定 期除草和松土。本试验于1999年9月播种前采集各处理0~

20 cm、苜蓿连作 0~200 cm 土样及冬小麦连作 0~100 cm (每 20 cm 一层)土壤样品,风干过筛,试验年种植作物品种 及生育期参见表 1。

试验中不同植物品种与生育期 表 1

It ilm to the	II 1.1.		生育期				
作物名称	品种	播种	收获				
小麦	1984、1985年用秦麦 4 号, 1986~ 1995年用长武 131, 1996年后用 长武 134	9 月中旬	次年 6 月下旬				
玉米	中丹二号或丹玉 13	4月中旬	9月中旬				
糜子	糜子为当地农家品种	7月上旬	10 月上旬				
马铃薯	沙杂、虎头或农家品种	4 月中旬	8月下旬				
豌豆	白豌豆	3 月中旬	7月上旬				
红豆草	由宁夏固原县引入品种	7月~8月	次年7月与9月各刈割一次				
苜蓿	紫花苜蓿	播种后 6 月上旬	播种后 6月上旬与 8 月下旬各刈割一次				

表 2

8

90

45

90

135

180

7

90

6

45

135

设对照(CK,长年不施肥,连作冬小麦);N(N1、N2、N3、N4)与 $P(P_1, P_2, P_3, P_4)$ 配比共 17 个处理(表 2)。试验小区面积22.2 m², 3次重复, 顺序排列。试验从1984年开始连续种植冬小 麦(品种 1984 年、1985 年用秦麦 4号, 1986~1995 年用长武

3

180

2

90

(2)长期肥料定位试验,以氮肥、磷肥为基本供试因子,

131, 1996年后用长武134), 播种期9月中、下旬, 次年6月 下旬收获,一年一熟。氮肥用尿素,磷肥用过磷酸钙,肥料在 播种前一次性施入土中,田间管理同大田。本试验于2000年 6 月冬小麦收获后采集各处理 0~20 cm 土样, 土样风干过 筛,统计冬小麦产量。

0 P2O5 1.3 分析方法

1

No.

有机 C 用重铬酸钾氧化法测定,全 N 用全自动定氮仪 测定, 有效 P 用 0.5 mol/L NaHCO3(pH= 8.5)提取, UV-VIS 8500Ê 型分光光度计测定(全自动进样), 结果以风干 土重为基准表示。

4

45

45

5

45

90

2 试验结果

2.1 连作不同施肥

苜蓿、小麦、玉米连作中施有机肥显著提高土壤有机 C 与全N含量,有有机肥投入的处理有机C提高2.47~4.33 g/kg。而单施氮肥或磷肥土壤有机 C、全 N 含量接近长期不

试验处理与施肥 kg/hm² 10 11 12 13 14 15 16 17 90 90 90 135 135 135 180 180 180

90

135

0

90

180

45

施肥的 CK 处理与休闲地。长期连作冬小麦不施肥、单施氮、 磷肥或休闲对土壤全N 含量影响不大; 苜蓿连作系统有机 C 与全 N 含量: NPM > CK > P, 冬小麦连作系统有机 C: NPM > M> PM> NM> NP> P> N> CK。有机肥的施用显著提 高了旱地土壤全 N 含量, 特别是 NPM 处理, 玉米、苜蓿、小 麦连作系统 NPM 处理土壤全氮分别提高了 37.5%、 57.5%、52.5%。不施磷的处理出现有效 P 的降低, 苜蓿连作

的施磷与 NPM 处理有效 P 含量较低, 说明 苜蓿的需 P 量显 然高于玉米与小麦。连作不同施肥土壤 C/N 除长年施 PM 处理相比休闲地增加外,其余处理均降低(表 3),相同施肥

条件下苜蓿对有机 C 与全 N 含量的提高幅度大于小麦与玉米。

表 3 连作施肥对土壤有机 C、全 N、有效 P 影响

AP TH		有机 C/(g・kg ⁻¹)		全 N/(g•kg-1)		C/ N		有效 P/(mg•kg ⁻¹)	
处 理		含量	+ /-	含量	+ /-	C/N	+ /-	含量	+ /-
休闲地		6. 566	-	0. 750	-	8. 755	-	4. 03	-
玉米连作	NPM	9. 501	2. 94	1.100	0.35	8. 637	- 0.118	30. 58	26. 55
	CK	8. 921	2. 36	1.080	0. 33	8. 260	- 0.495	2. 74	- 1.29
苜蓿连作	P	8. 782	2. 22	1.050	0.30	8. 364	- 0.391	5. 54	1.51
	NPM	10. 899	4. 33	1.260	0.51	8. 650	- 0.105	10.33	6. 30
	CK	6. 607	0.04	0. 790	0.04	8. 363	- 0.392	1.88	- 2.15
	P	6. 752	0.19	0.860	0.11	7. 851	- 0.904	17. 79	13.76
	N	6. 746	0.18	0.840	0.09	8. 031	- 0.724	3.06	- 0.97
	M	9. 304	2. 74	1. 120	0.37	8. 307	- 0.448	24. 83	20.80
小麦连作	NP	7. 541	0.97	0.900	0.15	8. 378	- 0.377	7. 29	3. 26
	PM	9. 292	2. 73	1.020	0. 27	9. 110	0.355	31.76	27. 73
	NM	9. 031	2.47	1.040	0. 29	8. 684	- 0.071	9.55	5. 52
	NPM	10. 638	4. 07	1. 220	0.47	8. 720	- 0.035	37. 48	33. 45

2.2 **轮作施肥** 轮作不同施肥对土壤有机 C、全 N、有效 P 影响明显, 施

肥系统有机 C 与全 N 大小顺序为 NPM> NP> P> CK, 有效 P 为 NPM> P> NP> CK。 粮草长周期轮作系统中, 冬小麦与马铃薯茬的土壤有机

NPM 提高了土壤有机 C、全 N 与有效 P 含量, 粮豆轮作施

C与全N含量接近,但苜蓿茬显然高于冬小麦与马铃薯茬, 苜蓿的生长有利于土壤有机C与全N的提高,但是从1995

~1999年,随着苜蓿在轮作系统各处理中存在的时间增加, 土壤有效 P 含量降低,显然苜蓿的需磷量高于冬小麦与马铃薯。粮豆轮作系统冬小麦与豌豆处理有机 C、全 N、有效 P 几 乎相等, 说明当季的茬口效应不明显, 但是麦+ 糜子处理是冬小麦收获又复种糜子, 采样时糜子仍在生长, 这一处理的有机、全 N、有效 P 均高于本系统的其它两个处理。粮草短周期轮作系统冬小麦收获后复种红豆草处理有机 C、全 N、有效 P 高于其它两个处理。

效 P 局于其它两个处理。 同时我们也发现:粮草轮作中引入苜蓿与红豆草对土壤全 N 有一定提高作用,两个系统中 6 个处理土壤全 N 较休闲地提高了 16%~34.7%,而豌豆这种作用较小。苜蓿与红豆草对有效 P 的影响较明显,当季有这两种植物的处理有效 P 含量相对同系统其它处理低;轮作施肥也使土壤 C/N 有下降趋势(表 4)。

表 4 轮作施肥对土壤 有机 C、全 N、有效 P 影响

处 理 -		有机 C/(g・kg-1)		全 N/(g ·kg-1)		C/ N		有效 P/(mg • kg ⁻¹)		
		_	含量	+ /-	含量	+ /-	C/ N	+ /-	含量	+ /-
休闲地			6. 566	-	0. 750	-	8. 755	-	4. 03	-
	冬小麦		7. 082	0. 52	0.880	0.13	8. 048	- 0.707	8. 53	4. 50
粮草轮作	马铃薯	NP	7. 187	0.62	0.870	0.12	8. 261	- 0.494	5. 56	1.53
	苜蓿		7. 900	1. 33	0. 980	0. 23	8. 061	- 0.694	3.61	- 0.42
	小麦		6. 990	0.42	0.840	0.09	8. 321	- 0.434	10. 93	6. 90
粮豆轮作	豌豆	NP	6. 966	0.40	0.820	0.07	8. 496	- 0.259	10.36	6. 33
	麦+ 糜子	NP	7. 715	1. 15	0. 990	0. 24	7. 793	- 0.962	12.80	8. 77
	麦+ 糜子	NPM	10. 429	3.86	1.17	0.42	8. 914	0. 159	43.38	39. 35
粮豆轮作施肥	麦+ 糜子	P	6.816	0. 25	0.81	0.06	8. 414	- 0.341	23. 26	19. 23
	麦+ 糜子	CK	6. 404	- 0.16	0.80	0.05	8. 005	- 0.750	2. 15	- 1.88
	麦+ 红豆草	·	8. 411	1.84	1.010	0. 26	8. 327	- 0.428	12. 08	8. 05
粮草轮作(3年)	小麦	NP	7. 709	1.14	0.960	0.21	8. 030	- 0.725	9.86	5.83
	红豆草		7. 546	0. 98	0. 920	0.17	8. 203	- 0.552	11.57	7. 54
粮饲轮作施肥	小麦	NP	7. 401	0. 84	0.88	0. 13	8. 411	- 0.344	13. 49	9. 46
	小麦	NPM	10. 162	3.60	1.15	0.40	8. 837	0.082	40. 72	36. 69

注:表中虚线表示粮豆轮作的 NP 处理与粮豆轮作施肥的 NP 处理为同一处理。

2.3 长期施化肥对土壤有机 C、全 N 与有效 P 影响

长期施用氮磷化肥可以维持较高的小麦产量,因为植物残体及根系量的增加对土壤有机 C 有一定积极影响,氮磷肥配施影响更为显著。试验除 CK 与单施 P 处理外,其余处理有机 C 含量均较试验前有提高,幅度在 2.3%~13.53%。

尽管随施氮量的增加,土壤全 N 含量有增加趋势,但是每增加 1 kgN,土壤全 N 平均仅增加 0.52 mg,这与国内外研究结果一致 $^{[1]}$ 。土壤 C/N 大部分为增加趋势,单独施磷甚至使有机 C 与全 N 有所降低。土壤有效 P 含量随施磷量的增加而增加,同时随配合施氮量的增加,有效 P 增加的幅度降低,

这是因为施氮增加, 作物带走的磷增加。长期单施磷肥使土壤有效 P 大幅度提高, 每年单施 P₂O₅180 kg/hm², 由于小麦

吸收利用少, 使有效 P 增加到 55. 11 mg/kg, 是试验前的 12 倍(表 5)。

表 5 长期施不同氮磷化肥对土壤有机 C、全 N、有效 P 影响

CO POSSIBLE FOR CONTRACT TO THE STATE OF THE											
处 理	有机 C/(有机 C/(g •kg ⁻¹)		全 N/(g・kg-1)		N	有效 P/(mg•kg-1)				
处 连	含量	+ /-	含 量	+ /-	C/ N	+ /-	含量	+ /-			
试验前	6. 090	-	0.800	-	7. 613	-	4. 58	-			
1	6. 183	0.093	0.813	0.013	7. 606	- 0.007	4. 61	0.03			
2	6. 096	0.006	0.740	- 0.060	8. 238	0.625	27. 16	22. 58			
3	6. 021	- 0.069	0.759	- 0.041	7. 933	0.320	55. 11	50. 53			
4	6. 230	0. 140	0.804	0.004	7. 748	0. 135	15. 79	11. 21			
5	6. 386	0. 296	0.829	0.029	7. 704	0.091	18. 63	14. 05			
6	6. 473	0.383	0.849	0.049	7. 625	0.012	27. 16	22. 58			
7	6. 253	0. 163	0.805	0.005	7. 768	0. 155	3. 57	- 1.01			
8	6. 705	0.615	0.839	0.039	7. 992	0.379	11. 53	6. 95			
9	6.607	0.517	0.857	0.057	7. 709	0.096	18. 16	13.58			
10	6. 914	0.824	0.883	0.083	7.830	0. 217	36. 16	31.58			
11	6.862	0.772	0.865	0.065	7. 933	0.320	37. 64	33.06			
12	6. 705	0.615	0.880	0.080	7. 620	0.007	10.30	5. 72			
13	6. 833	0. 743	0.884	0.084	7. 730	0.117	11.81	7. 23			
14	6.717	0.627	0.831	0.031	8. 083	0.470	17. 97	13.39			
15	6. 404	0.314	0.878	0.078	7. 294	- 0.319	4.71	0. 13			
16	6. 746	0.656	0.866	0.066	7. 790	0. 177	13.90	9. 32			
17	6. 821	0. 731	0.871	0.071	7. 832	0. 219	21. 76	17. 18			

2.4 不同施肥对剖面养分分布影响

不同施肥条件下土壤养分作物生长量不同,因而对土壤养分的吸收量不同,同时根系及残体归田的数量也不同,对土壤养分有深刻影响,在前面已有阐述,这里仅分析剖面状况。

2.4.1 不同施肥连作苜蓿的养分分布 苜蓿有很深的 根系分布, 施 NPM 处理土壤深层有机 C 含量 高于 CK 与施磷处

理,说明长期施 NPM 有利于保持或提高土壤深层有机 C 含量;对剖面全 N 而言,施 NPM 与磷处理使土壤 20~100 cm 土层全 N 得以保持,而 CK 处理 20~40 cm,40~60 cm 土层含量明显低于施肥处理,在不施肥条件下,苜蓿可以利用消耗土壤深层 N 素。而且对土壤深层 N 素的利用强度较高,由于 N 素的消耗, CK 处理 20~100 cm 土层 C/N 较施肥处理高(图 1)。

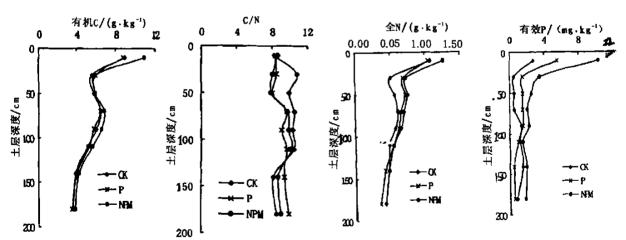


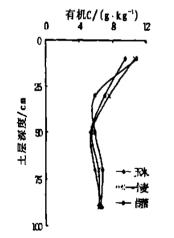
图 1 不同施肥对土壤剖面养分含量分布的影响

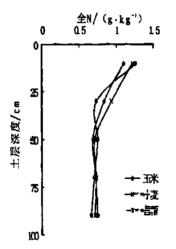
也明显反映了不同施肥处理间的差异 NPM> P> CK,不同施肥对有效 P 剖面含量分布的影响至少可达 80~100 cm 深度。通常土壤磷酸根离子在土壤中很少移动,所以磷从施肥点的移动很有限。旱地长期施磷肥可以增加土壤耕层磷含量,而人工草地苜蓿的种植,不施肥条件下土壤深层 N、P 都降低,而施肥使深层土壤 N、P 保持或增加,NPM 处理剖面有效 P含量高于 P与 CK 处理,甚至到 180~200 cm 土层,这可能是根系残留物影响,也可能苜蓿的根系穿插而使紧实的底土变松,形成大空隙,磷素由于大空隙流向下移动造成。

土壤剖面有效 P 含量分布特点是耕层以下急剧降低, 但

2.4.2 不同施肥连作冬小麦的养分分布 冬小麦连作系统不同施肥土壤 0~100 cm 有机 C 含量分布, CK、磷处理、休闲地的最低含量位于 20~40 cm 土层, 其余处理在 40~60 cm 土层, 可见不施肥使 40~60 cm 土层有机 C 大量消耗。NPM、M、NM、PM 处理不但耕层有机 C 含量高于其它处

理,而且 20~40 cm 土层也较其它处理有机 C 含量高。全 N 在剖面上的分布, 施肥使 20~40 cm 土层全 N 含量高于 CK 与休闲地。也就是说经过长期施肥耕种土壤 20~40 cm 养分


紧实 含量也发生了改变。施磷肥处理显著提高了 $0\sim20~{\rm cm}$ 与 $20~{\rm cm}$ 与 $20~{\rm cm}$ 与 $20~{\rm cm}$ 之后成。 $\sim40~{\rm cm}$ 土层的有效 $20~{\rm cm}$ 2 全量, $20\sim100~{\rm cm}$ 土层有效磷含量处


理间的方差分析与多重比较表明 NM、CK、休闲地与其余 6 个处理间有差异,说明施肥对土壤 40~100 cm 土壤有效磷含量有影响(表 6)。 NP 处理 0~40 cm 土层有效 P 含量高于

N 处理, 但远低于有有机肥投入的处理, 说明有机肥尽管可以增加土壤有效 P 含量, 但施 N, 产量增加带走了大量土壤 P.

	K * 13 XZII 1 136663 Z Z G B Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z										
	土层/ cm	NPM	NM	PM	M	NP	P	N	CK	休闲地	
	0~20	10.64	9. 03	9. 29	9. 30	7. 54	6.75	6. 75	6. 61	6. 57	
	$20 \sim 40$	7. 58	6.68	6. 57	6.86	6. 11	5.71	5.97	5.46	5.66	
有机 C/(g・kg ⁻¹)	$40 \sim 60$	5. 50	5. 63	5. 57	5. 39	5.50	5.64	5.48	5. 56	6.06	
	$60 \sim 80$	6. 36	6.65	6. 51	6.04	6. 17	6.29	5.97	6.30	6. 55	
	$80 \sim 100$	6. 36	6. 97	7.06	6.48	7. 15	6.98	6. 54	6. 52	6. 72	
	0~20	1. 22	1. 04	1. 02	1. 12	0. 90	0.86	0. 84	0. 79	0. 75	
	20~40	0. 94	0.76	0.77	0.82	0.76	0.74	0.76	0.68	0.67	
全N/(g·kg-1)	$40 \sim 60$	0.71	0.66	0. 63	0.67	0.65	0.69	0.73	0.64	0.65	
	$60 \sim 80$	0. 73	0.69	0.66	0.68	0.67	0.72	0.71	0.66	0.69	
	$80 \sim 100$	0.71	0.71	0.72	0.69	0.75	0.77	0.74	0.69	0.66	
	0~20	37. 48	9. 55	31. 76	24. 83	7. 29	17. 79	3.06	1. 88	4. 03	
	20~40	19. 92	2. 93	9. 64	10. 17	2. 67	5.03	1.83	0. 23	1.07	
有效 P/(mg·kg-1)	$40 \sim 60$	4. 36	0. 22	1. 14	1.94	1.77	1.91	2. 10	0. 22	0.05	
	$60 \sim 80$	1.81	0.38	0.91	2. 16	1.90	2.57	3.07	0. 22	0.34	
	80~100	1. 58	0. 63	1. 09	3. 34	3. 11	3.57	1.54	0.55	0.47	

表 6 冬小麦连作不同施肥对土壤剖面养分状况的影响

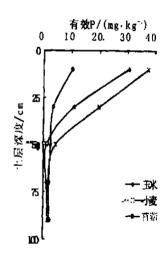


图 2 不同作物对土壤剖面养分分布的影响

2.4.3 **同施** NPM 不同作物的养分分布 相同施肥条件下不同作物对土壤养分的利用不同,在土壤的表层和下层均有表现,在 $0\sim20$ cm 土层有机 $C\sim2$ N 含量小麦地接近苜蓿地但高于玉米地,可能是玉米需要养分量大于小麦与苜蓿,同时苜蓿与小麦有较玉米多的残体进入土壤。而在 $20\sim40$ cm 土层有机 C 与全 N 含量大小为小麦地> 玉米地> 苜蓿地,可见苜蓿对土壤下层养分利用高于小麦与玉米,在更深层这种差异表现不明显。一般苜蓿带走的 N、P 量多于玉米,玉米多于小麦[6]。

在土壤 $0\sim20$ cm 与 $20\sim40$ cm 土层有效 P 含量小麦> 玉米> 苜蓿, 反映出它们需 P 量的不同, 深层没有差异(图 2)。

2.5 土壤养分含量与产量关系

从土壤有机C含量与当季作物籽粒产量的线性关系

(图 3,4)可知,有机 C 是反映土壤肥力高低的一个重要的综合指标,而土壤有机 C 与土壤全 N 含量之间有极高的相关性:

尽管单施化学肥料对土壤有机 C 影响幅度不大, 但是试验中土壤有机 C 含量与产量之间有极显著的线性相关关系(图 4)。

3 结 论

(1)种植不同作物,施有机肥是提高土壤养分含量与产量的有效措施。轮作中引入豆科作物对土壤有效 P 有一定影响,对有机 C、全 N 含量影响不大。

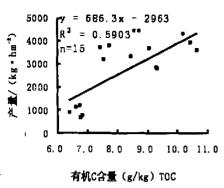
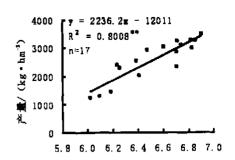
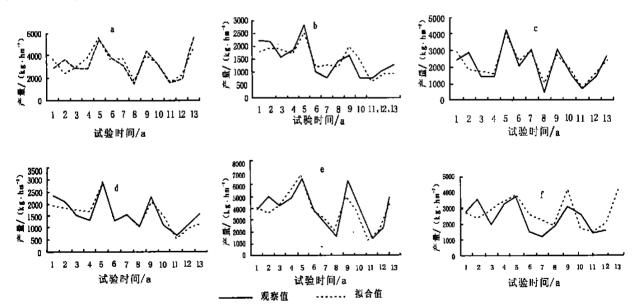



图 3 轮作中冬小麦地有机 C 含量与产量关系

(2)单独施化肥对土壤有机 C、全 N 影响并不明显, 但随施肥量的增加土壤有机 C、全 N 有一定增加, 其与产量的显著相关关系表明, 施化肥对土壤养分有影响, 这是长期施化

有机C含量(g/kg)TOC

图 4 施化肥有机 C 含量与产量关系


肥增加了生物量,也给土壤留下了更多的残留物。

(3) 植物对土壤养分的影响已不限制在耕层,特别是苜蓿对土壤底土养分的利用能力大于小麦与玉米。

参考文献:

- [1] 沈善敏. 国外长期肥料试验一、二、三[J]. 土壤通报, 1984, 2-4: 85-91, 134-138, 184-185.
- [2] 李科江, 张素芳, 史文竹, 等. 半干旱地区长期施肥对作物产量和土壤肥力的影响[J]. 植物营养与肥料学报, 1999, 5(1): 21-25.
- [3] 钦绳武, 顾益初, 朱兆良. 潮土肥力演变与施肥作用的长期试验 初报[J]. 土壤学报, 1998, 35(3): 367-375.
- [4] 蒂斯代尔, SL, 纳尔逊, WL, 毕藤, JD. 土壤肥力与肥料(第四版) [M]. 金继运等译. 北京: 中国农业科技出版社. 1998.
- [5] 李科江、张素芳、贾文竹、等. 半干旱地区长期施肥对作物产量和土壤肥力的影响[J]. 植物营养与肥料学报、1999、5(1): 21-25.
- [6] 王生录, 陈炳东. 陇东旱塬施肥培肥效果研究[J]. 土壤通报, 1999, 30(4): 171-173.
- [7] 樊军,郝明德,党廷辉. 旱地长期定位施肥对土壤剖面硝态氮分布与累积的影响[J]. 土壤与环境,2000,9(1):23-26.
- [8] 刘杏兰, 高 宗, 刘存寿, 等. 有机- 无机肥配施的增产下效应及对土壤肥力影响的定位研究[J]. 土壤学报, 1996, 33(2): 138-147.
- [9] 兰晓泉, 郭贤仕. 旱地长期施肥对土地生产力和肥力的影响[J]. 土壤通报, 2001, 32(3): 102-105.

(上接第11页)

a-NP配合, b-单施P, c-单施N, d-对照, e-NPM配合, f-单施M 图 1 关键水分因子预测产量结果

由于作物产量受多种因素综合影响。只考虑肥料和降水两种关键因素,诚然对评价或预测本区小麦生产状况有重要意义,但仍然有一定的局限性。许多环境因素如温度、湿度、干燥度等在年际间都有一定差异。长期实施一些耕作施肥措

施,直接影响土壤的理化性质,也会改变土壤的蓄水供肥特性。但毋庸置疑的是,水分和肥料永远是旱作产量两大主要限制因素。

参考文献:

- [1] 李玉山, 苏陕民. 长武王东沟高效生态经济系统综合研究[M]. 北京: 科学技术文献出版社, 1991. 115-125.
- [2] 袁志发. 多元统计分析[M]. 杨陵: 天则出版社, 1988.