[1]王 斐,马锐豪,夏 开,等.森林转换对土壤活性有机碳组分的影响[J].水土保持研究,2023,30(01):233-240.[doi:10.13869/j.cnki.rswc.2023.01.021]
 WANG Fei,MA Ruihao,XIA Kai,et al.Response of Soil Labile Organic Carbon Fractions to Forest Conversions[J].Research of Soil and Water Conservation,2023,30(01):233-240.[doi:10.13869/j.cnki.rswc.2023.01.021]
点击复制

森林转换对土壤活性有机碳组分的影响

参考文献/References:

[1] Lal R. Soil carbon sequestration impacts on global climate change and food security [J]. Science, 2004,304(5677):1623-1627.
[2] Oelkers E H, Cole D R. Carbon dioxide sequestration:A solution to a global problem [J]. Elements, 2008,4(5):305-310.
[3] Lal R, Smith P, Jungkunst H F, et al. The carbon sequestration potential of terrestrial ecosystems [J]. Journal of Soil and Water Conservation, 2018,73(6):145-152.
[4] 陈志杰,韩士杰,张军辉.土地利用变化对漳江口红树林土壤有机碳组分的影响[J].生态学杂志,2016,35(9):2379-2385.
[5] Guan S, An N, Zong N, et al. Climate warming impacts on soil organic carbon fractions and aggregate stability in a Tibetan alpine meadow [J]. Soil Biology and Biochemistry, 2018,116:224-236.
[6] Zhao Y G, Liu X F, Wang Z L, et al. Soil organic carbon fractions and sequestration across a 150-yr secondary forest chronosequence on the Loess Plateau, China [J]. Catena, 2015,133:303-308.
[7] Wang Q, Wang S. Response of labile soil organic matter to changes in forest vegetation in subtropical regions [J]. Applied Soil Ecology, 2011,47(3):210-216.
[8] 王仁杰,蒋燚,王勇,等.南亚热带不同红锥混交林土壤碳库稳定性与碳库管理指数变化[J].林业科学研究,2021,34(2):24-31.
[9] Hobley E, Baldock J, Hua Q, et al. Land-use contrasts reveal instability of subsoil organic carbon [J]. Global Change Biology, 2017,23(2):955-965.
[10] 李若南,楚海燕,李一清,等.森林转换对不同土层土壤碳氮含量及储量的影响[J].亚热带资源与环境学报,2019,14(1):23-29.
[11] Chen L C, Wang H, Yu X, et al. Recovery time of soil carbon pools of conversional Chinese fir plantations from broadleaved forests in subtropical regions, China[J]. Science of the Total Environment, 2017,587:296-304.
[12] Yang Y, Guo J, Chen G, et al. Effects of forest conversion on soil labile organic carbon fractions and aggregate stability in subtropical China [J]. Plant and Soil, 2009,323(1):153-162.
[13] Hizal A, Gokbulak F, Zengin M, et al. Effect of vegetation change from native broadleaf forest to coniferous plantation on selected soil properties [J]. Environmental Monitoring and Assessment, 2013,185(12):10249-10256.
[14] Haghdoost, Niloufar, Akbarinia, et al. Conversion of Hyrcanian degraded forests to plantations:Effects on soil C and N stocks [J]. Annals of Biological Research, 2011,2(5):385-399.
[15] Blair G, Lefroy R, Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems [J]. Australian Journal of Agricultural Research, 1995,46(7):393-406.
[16] Cambardella C A, Elliott E T. Particulate soil organic-matter changes across a grassland cultivation sequence [J]. Soil Science Society of America Journal, 1992,56(3):777-783.
[17] Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C [J]. Soil Biology and Biochemistry, 1987,19(6):703-707.
[18] Sheng H, Zhou P, Zhang Y, et al. Loss of labile organic carbon from subsoil due to land-use changes in subtropical China [J]. Soil Biology and Biochemistry, 2015,88:148-157.
[19] 胡雪寒,刘娟,姜培坤,等.亚热带森林转换对不同粒径土壤有机碳的影响[J].土壤学报,2018,55(6):1485-1493.
[20] Guo L B, Gifford R M. Soil carbon stocks and land use change:a meta analysis [J]. Global Change Biology, 2002,8(4):345-360.
[21] 王一佩,孙美美,程然然,等.黄土高原中西部人工针叶林浅层土壤有机碳积累及影响因素[J].水土保持研究,2020,27(3):30-36.
[22] Polyakov V O, Lal R. Soil organic matter and CO2 emission as affected by water erosion on field runoff plots[J]. Geoderma, 2008,143:216-222.
[23] Mayer M, Prescott C E, Abaker W E A, et al. Tamm Review:Influence of forest management activities on soil organic carbon stocks:A knowledge synthesis [J]. Forest Ecology and Management, 2020,466:118127.
[24] 殷有,刘源跃,井艳丽,等.辽东山区3种典型林型土壤有机碳及其组分含量[J].生态学杂志,2018,37(7):2100-2106.
[25] Lv H, Liang Z. Dynamics of soil organic carbon and dissolved organic carbon in Robina pseudoacacia forests [J]. Journal of Soil Science & Plant Nutrition, 2012,12(4):763-774.
[26] Laik R, Kumar K, Das D K, et al. Labile soil organic matter pools in a calciorthent after 18 years of afforestation by different plantations [J]. Applied Soil Ecology, 2009,42(2):71-78.
[27] Eduard Strosser. Methods for determination of labile soil organic matter:An overview [J]. Journal of Agrobiology, 2010,27(2):49-60.
[28] Nahrawi H, Husni M, Radziah O. Labile carbon and carbon management index in peat planted with various crops [J]. Communications in Soil Science & Plant Analysis, 2012,43(12):1647-1657.
[29] Wang Q, Xiao F, He T, et al. Responses of labile soil organic carbon and enzyme activity in mineral soils to forest conversion in the subtropics [J]. Annals of Forest Science, 2013,70(6):579-587.
[30] Xiao Y, Tong F, Liu S, et al. Response of soil labile organic carbon fractions to forest conversions in subtropical China [J]. Tropical Ecology, 2016,57(4):691-699.
[31] 丘清燕,梁国华,黄德卫,等.森林土壤可溶性有机碳研究进展[J].西南林业大学学报,2013,33(1):86-96.
[32] 张艳,李勋,宋思梦,等.马尾松与乡土阔叶树种凋落叶混合分解过程中微生物生物量特征[J].生态环境学报,2021,30(4):681-690.
[33] Dos S U J, De Medeiros E V, Duda G P, et al. Land use changes the soil carbon stocks, microbial biomass and fatty acid methyl ester(FAME)in Brazilian semiarid area [J]. Archives of Agronomy and Soil Science, 2018,65(6):755-769.
[34] Da Silva D K A, De Oliveira Freitas N, De Souza R G, et al. Soil microbial biomass and activity under natural and regenerated forests and conventional sugarcane plantations in Brazil [J]. Geoderma, 2012,189:257-261.
[35] 韩琳,张玉龙,金烁,等.灌溉模式对保护地土壤可溶性有机碳与微生物量碳的影响[J].中国农业科学,2010,43(8):1625-1633.
[36] 牟凌,张丽,陈子豪,等.四川盆地西缘4种人工林土壤有机碳组分特征[J].甘肃农业大学学报,2020,55(3):121-126,133.
[37] 陈志杰,韩士杰,张军辉.土地利用变化对漳江口红树林土壤有机碳组分的影响[J].生态学杂志,2016,35(9):2379-2385.
[38] 翟凯燕,马婷瑶,金雪梅,等.间伐对马尾松人工林土壤活性有机碳的影响[J].生态学杂志,2017,36(3):609-615.
[39] 郝江勃,乔枫,蔡子良.亚热带常绿阔叶林土壤活性有机碳组分季节动态特征[J].生态环境学报,2019,28(2):245-251.
[40] 朱浩宇,王子芳,陆畅,等.缙云山5种植被下土壤活性有机碳及碳库变化特征[J].土壤,2021,53(2):354-360.
[41] 刘雅洁,王亮,樊伟,等.海拔对杉木人工林土壤活性有机碳组分的影响[J].西北农林科技大学学报:自然科学版,2021,49(8):2-12.
[42] Xie B, Zhang C, Wang G, et al. Global convergence in correlations among soil properties [J]. International Journal of Agricultural and Biological Engineering, 2020,13(3):108-116.
[43] 习丹,余泽平,熊勇,等.江西官山常绿阔叶林土壤有机碳组分沿海拔的变化[J].应用生态学报,2020,31(10):3349-3356.
[44] 龚臣,王旭东,倪幸,等.长期菌渣化肥配施对稻田土壤活性有机碳组分和有效养分的影响[J].浙江农林大学学报,2018,35(2):252-260.
[45] Fu B, Qi Y B, Chang Q R. Impacts of revegetation management modes on soil properties and vegetation ecological restoration in degraded sandy grassland in farming-pastoral ecotone[J]. International Journal of Agricultural & Biological Engineering, 2015,8(1):26-34.
[46] Parfitt R L, Giltrap D J, Whitton J S. Contribution of organic matter and clay minerals to the cation exchange capacity of soils [J]. Communications in Soil Science and Plant Analysis, 1995,26(9/10):1343-1355.
[47] 郭辉,唐卫平.不同林龄华北落叶松根际与非根际土壤酶和土壤微生物研究[J].生态环境学报,2020,29(11):2163-2170.
[48] 徐雅洁,郭月峰,姚云峰,等.不同林分配置对土壤水分物理性质的影响[J].四川农业大学学报,2021,39(3):370-377.

备注/Memo

收稿日期:2021-11-08 修回日期:2021-11-25
资助项目:国家“十三五”重点研发计划项目“一般产区杉木林土壤肥力维持与健康可持续经营的林地管理技术研究”(2016YFD0600304-03)
第一作者:王斐(1997—),男,安徽安庆人,在读硕士研究生,主要从事森林生态及复合经营研究。E-mail:wangfei014714@163.com
通信作者:徐小牛(1961—),男,安徽庐江人,教授,博士生导师,主要从事森林培育及森林生物地球化学研究。E-mail:xnxu2007@ahau.edu.cn

更新日期/Last Update: 2023-01-10