[1]张星辰,高建恩,樊恒辉,等.纳米土壤固化剂重构黄土力学性能的试验研究[J].水土保持研究,2021,28(06):131-137.
 ZHANG Xingchen,GAO Jianen,FAN Henghui,et al.Experimental Research on Mechanical Properties of Reconsolidated Loessial Soil with Nano Soil-Stabilizer[J].Research of Soil and Water Conservation,2021,28(06):131-137.
点击复制

纳米土壤固化剂重构黄土力学性能的试验研究

参考文献/References:

[1] Mahedi M,Cetin B,White D J. Cement,lime,and fly ashes in stabilizing expansive soils: Performance evaluation and comparison[J]. Journal of Materials in Civil Engineering,2020,32(7).DOI:10.1061/(ASCE)MT.1943-5533.0003260.
[2] Islam M S,Elahi T E,Shahriar A R,et al. Effectiveness of fly ash and cement for compressed stabilized earth block construction[J]. Construction and Building Materials,2020,255.DOI:10.1016/j.conbuildmat.2020.119392.
[3] Fu G,Huo D,Shyha I,et al. Experimental investigation on micro milling of polyester/halloysite nano-clay nanocomposites[J]. Nanomaterials,2019,9(7).DOI:10.3390/nano9070917.
[4] Xiao H,Wang W,Goh S H. Effectiveness study for fly ash cement improved marine clay[J]. Construction and Building Materials,2017,157:1053-1064.
[5] 樊恒辉,高建恩,吴普特,等.不同结构土壤固化剂集流面的力学与集流性能研究[J].西北农林科技大学学报:自然科学版,2013,41(7):224-228,234.
[6] Hassan N,Hassan W H W,Rashid A S A,et al. Microstructural characteristics of organic soils treated with biomass silica stabilizer[J]. Environmental Earth Sciences,2019,78(12):1-9.
[7] Pu S,Hou Y,Ma J,et al. Stabilization behavior and performance of loess using a novel biomass-based polymeric soil stabilizer[J]. Environmental & Engineering Geoscience,2019,25(2):103-114.
[8] Yin C,Zhang W,Jiang X,et al. Effects of initial water content on microstructure and mechanical properties of lean clay soil stabilized by compound calcium-based stabilizer[J]. Materials,2018,11(10).DOI: 10.3390/ma11101933.
[9] 张启,孙秀丽,刘文化,等.不同水泥掺量下非饱和固化淤泥力学特性试验研究[J].大连理工大学学报,2020,60(2):184-191.
[10] 曹智国,章定文.水泥土无侧限抗压强度表征参数研究[J].岩石力学与工程学报,2015,34(S1):3446-3454.
[11] Thomas G,Rangaswamy K. Strengthening of cement blended soft clay with nano-silica particles[J]. Geomechanics and Engineering,2020,20(6):505-516.
[12] Kong R,Zhang F,Wang G,et al. Stabilization of loess using nano-SiO2[J]. Materials,2018,11(6).DOI:10.3390/ma11061014.
[13] 陈泽超,李健,胡铁,等.不同纳米材料改性水泥土力学性能的对比研究[J].土工基础,2020,34(5):583-586.
[14] 高建恩,张星辰,高哲,等.一种纳米土壤固化剂及其制备方法:中国,CN201811230538.6[P].2019-02-01.
[15] Zhang X,Gao J,Fan H,et al. Study on the mechanism of Nano-SiO2 for improving the properties of cement-based soil stabilizer[J]. Nanomaterials,2020,10(3).DOI:10.3390/nano10030405.
[16] Guo L,Guo X,Hong J,et al. Constitutive relation of concrete containing meso-structural characteristics[J]. Results in Physics,2017,7:1155-1160.
[17] 樊恒辉,吴普特,高建恩,等.密度和含水率对固化土无侧限抗压强度的影响[J].中国水土保持科学,2006,4(3):54-58.
[18] Tchakalova B. Effect of clay content on strength and permeability of plastic loess-cement[J]. Geologica Balcanica,2019,48(2):25-30.
[19] Wang T,Song H,Yue Z,et al. Freeze-thaw durability of cement-stabilized macadam subgrade and its compaction quality index[J]. Cold Regions Science and Technology,2019,160:13-20.
[20] Reddy B V V,Latha M S. Influence of soil grading on the characteristics of cement stabilised soil compacts[J]. Materials and Structures,2014,47(10):1633-1645.
[21] Tyler S W,Wheatcraft S W. Fractal scaling of soil particle-size distributions: Analysis and limitations[J]. Soil Science Society of America Journal,1992,56(2):362-369.
[22] 杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报,1993,38(20):1896-1899.
[23] 侯蕊,吴家琦,樊铁兵,等.水泥土室内试验无侧限抗压强度差异分析[J].土工基础,2020,34(1):76-79,88.
[24] 何云龙,肖桃李,汪中林.不同土质水泥土的无侧限抗压强度研究[J].长江大学学报:自然科学版,2020,17(1):102-107.
[25] Wei Y,Hansen W. Early-age strain-stress relationship and cracking behavior of slag cement mixtures subject to constant uniaxial restraint[J]. Construction and Building Materials,2013,49:635-642.
[26] 满达,庞文台,樊忠成,等.复合水泥土应力应变本构模型研究[J].硅酸盐通报,2019,38(1):99-102
[27] 冀璐,高建恩,郝连安,等.MBER固化土弹性模量的试验研究[J].水土保持通报,2012,32(5):261-264.
[28] 张少龙,高建恩,李兴华,等.含盐量对MBER土壤固化剂加固土性能的影响试验[J].水电能源科学,2015,33(11):133-135,139.
[29] 樊恒辉,高建恩,吴普特,等.水泥基土壤固化剂固化土的物理化学作用[J].岩土力学,2010,31(12):3741-3745.
[30] Peng Y,Ma K,Long G,et al. Influence of nano-SiO2,nano-CaCO3 and nano-Al2O3 on rheological properties of cement-fly ash paste[J]. Materials,2019,12(16).DOI:10.3390/ma12162598.
[31] Khaloo A,Mobini M H,Hosseini P. Influence of different types of nano-SiO2 particles on properties of high-performance concrete[J]. Construction and Building Materials,2016,113: 188-201.
[32] Quercia G,Hüsken G,Brouwers H J H. Water demand of amorphous nano silica and its impact on the workability of cement paste[J]. Cement and Concrete Research,2012,42(2):344-357.
[33] 贾景超,陈志涛,郭佳朋,等.可溶盐对水泥土强度影响试验研究[J].人民长江,2019,50(S1): 298-301.
[34] 刘剑平,白晓红,王林浩.偏高岭土对水泥土强度影响的机理研究[J].非金属矿,2017,40(6):27-29.
[35] 黄冠华,詹卫华.土壤颗粒的分形特征及其应用[J].土壤学报,2002,39(4):490-497.

备注/Memo

收稿日期:2020-12-13 修回日期:2020-12-25
资助项目:国家重点研发计划课题(2017YFC0504703); 国家自然科学基金(41877078,41371276); 中国科学院知识创新工程项目(A315021615); 陕西省科技统筹创新工程计划(2013KTDZ03-03-01); 陕西省自然科学基础研究项目(2016ZDJC-20)
第一作者:张星辰(1990—),男,陕西西安人,博士研究生,研究方向为水土保持工程材料。E-mail:zxc_cau@163.com
通信作者:高建恩(1962—),男,山西运城人,博士,研究员,主要从事水土资源高效利用研究。E-mail:gaojianen@126.com

更新日期/Last Update: 2021-10-10