[1]范媛媛,李懿,李启迪.不同林龄油松土壤微生物、酶活性和养分特征[J].水土保持研究,2019,26(06):58-64.
 FAN Yuanyuan,LI Yi,LI Qidi.Microbe, Enzymatic Activity and Nutrient Contents of Soils in Different Stand Ages of Pinus tabuliformis[J].,2019,26(06):58-64.
点击复制

不同林龄油松土壤微生物、酶活性和养分特征()
分享到:

《水土保持研究》[ISSN:1005-3409/CN:61-1272/P]

卷:
26卷
期数:
2019年06期
页码:
58-64
栏目:
出版日期:
2019-10-17

文章信息/Info

Title:
Microbe, Enzymatic Activity and Nutrient Contents of Soils in Different Stand Ages of Pinus tabuliformis
作者:
范媛媛1 李懿2 李启迪3
1. 山东师范大学 济南 250000;
2. 阿坝师范学院 资源与环境学院, 四川 阿坝 623002;
3. 山东职业学院生物系, 济南 250000
Author(s):
FAN Yuanyuan1 LI Yi2 LI Qidi3
1. Shandong Normal University, Jinan, Shandong 250100, China;
2. Aba Teachers College, Wenchuan, Sichuan 623002, China;
3. Shandong Vocational College of Biology, Jinan, Shandong 250100, China
关键词:
油松土壤养分土壤酶活性土壤微生物多样性
Keywords:
Pinus tabuliformissoil nutrientssoil enzyme activitysoil microbial diversity
分类号:
Q154
摘要:
对不同林龄油松林根际和非根际土壤养分、酶活性和微生物数量进行了研究。结果表明:(1)油松林的土壤pH处于偏弱酸性,根际和非根际土壤pH随着油松林龄的增长表现出先降低后增加趋势,在成熟林阶段达到最低,不同生长阶段油松根际土壤pH显著低于非根际土壤pH(p<0.05)。(2)土壤中根际和非根际有机碳、全氮、有效磷和有效钾含量呈一致的变化趋势,随着油松林龄的增长表现出先增加后降低趋势,在成熟林阶段达到最大值,其中幼林、中林和成熟林根际有机碳、全氮、有效磷和有效钾含量显著高于非根际(p<0.05),过熟林根际有机碳、全氮、有效钾和有效磷含量与非根际差异并不显著(p>0.05)。(3)土壤中根际和非根际土壤酶活性(蔗糖酶活性、碱性磷酸酶活性、脲酶活性、过氧化氢酶活性)和微生物群落多样性(物种丰富度指数、均匀度指数、优势度指数、碳源利用指数)呈一致的变化趋势,随着油松林龄的增长表现出先增加后降低趋势,在成熟林阶段达到最大值,其中幼林、中林和成熟林根际土壤酶活性和微生物群落多样性显著高于非根际(p<0.05),过熟林根际土壤酶活性和微生物群落多样性与非根际差异并不显著(p>0.05)。(4)油松根际土壤微生物总数高于非根际,其中细菌数目所占比例最高,放线菌数目所占比例最低。(5)相关性分析表明,土壤pH与土壤微生物群落功能多样性各指标呈负相关,土壤有机碳和全氮、蔗糖酶活性、碱性磷酸酶活性、细菌数目、微生物总数与土壤微生物群落功能多样性各指标呈显著的相关性。由此可知,土壤pH对土壤微生物群落功能多样性贡献为负,土壤养分、土壤酶活性和微生物数量对土壤微生物群落功能多样性起到正调节作用,其中土壤有机碳和全氮、蔗糖酶活性、碱性磷酸酶活性、细菌数目和微生物总数是土壤微生物群落多样性的主要影响因子。
Abstract:
We studied the soil microbe, enzyme activity and nutrients of soil in the rhizosphere and non-rhizosphere in different stand ages of Pinus tabuliformis in Minjiang River valley. The results showed that:(1) the soil pH of Pinus tabulata was slight acidity, and the organic carbon contents in the rhizosphere and non-rhizosphere showed a trend of decreasing and then increasing with the increase of ages of Pinus tabulata, and reached the lowest at the mature stage; the pH of the rhizosphere soil in different growth stages was significantly lower than that in the non-rhizosphere soil (p<0.05); (2) in the rhizosphere and non-rhizosphere, the contents of soil organic carbon, total nitrogen, available phosphorus and available potassium presented the consistent with the trend which showed the increase at first, and then the decrease, and reached up to the peak values in the mature forest stage with the increase of the ages of Pinus tabulaeformis, rhizosphere the contents of organic carbon, total nitrogen, available phosphorus and available potassium in the rhizosphere of young forest, middle forest and mature forest were significantly higher than those of the non-rhizosphere (p<0.05), the contents of soil organic carbon, total nitrogen, available phosphorus and available potassium in the rhizosphere of the aged forest were not significant difference from those of the non-rhizosphere (p>0.05); (3) soil enzyme activities (sucrase activity, the activity of alkaline phosphatase, urease activity and catalase activity) and microbial community diversity, species richness index, evenness index, dominance index, carbon source utilization index) in the rhizosphere and non-hizosphere were consistent with the trend which showed the increase at first, and then the decrease, reached up to the peak values in the mature forest stage, soil enzyme activities and microbial community diversity in rhizosphere of young forest, middle forest and mature forest were significantly higher than those of the non-rhizosphere (p<0.05), there was no significant difference in enzyme activity and microbial community diversity between rhizosphere soil and non-rhizosphere soil of the aged forest (p>0.05); (4) because of the influence of microbial community on slightly rhizospheric secretion, the microbe amounts of Pinus tabulaeformis rhizosphere were higher than those of the non-rhizosphere, the proportion of bacteria to the total microbe in the rhizosphere and non-rhizosphere was the highest, the proportion of actinomycete to the total microbe in the rhizosphere and non-rhizosphere was the least; (5) correlation analysis showed that there was a negative correlation between the functional diversity of soil microbial community and soil pH, which was significantly correlated with soil organic carbon and total nitrogen, sucrase activity, alkaline phosphatase activity, number of bacteria and total number of microorganisms; therefore, soil pH negatively contributed to soil microbial community functional diversity, and soil nutrient, soil enzyme activity and microbial quantity had the positive contribution to soil microbial community functional diversity, soil organic carbon and total nitrogen, invertase activity, alkaline phosphatase activity, number of bacteria and the total number of microorganisms are the main influence factors on the soil microbial community diversity.

参考文献/References:

[1] Newman M M, Hoilett N, Lorenz N, et al. Glyphosate effects on soil rhizosphere-associated bacterial communities[J]. Science of the Total Environment, 2016,543:155-160.
[2] Pétriacq P, Williams A, Cotton A, et al. Metabolite profiling of non-sterile rhizosphere soil[J]. the Plant Journal, 2017,92(1):147-162.
[3] Koebernick N, Daly K R, Keyes S D, et al. High-resolution synchrotron imaging shows that root hairs influence rhizosphere soil structure formation[J]. New Phytologist, 2017,216(1):124-135.
[4] Angst G, K?gel-Knabner I, Kirfel K, et al. Spatial distribution and chemical composition of soil organic matter fractions in rhizosphere and non-rhizosphere soil under European beech(Fagus sylvatica L.)[J]. Geoderma, 2016,264:179-187.
[5] Wang X, Tang C, Severi J, et al. Rhizosphere priming effect on soil organic carbon decomposition under plant species differing in soil acidification and root exudation[J]. New Phytologist, 2016,211(3):864-873.
[6] Wang X, Tang C, Severi J, et al. Rhizosphere priming effect on soil organic carbon decomposition under plant species differing in soil acidification and root exudation[J]. New Phytologist, 2016,211(3):864-873.
[7] Dotaniya M L, Meena V D. Rhizosphere effect on nutrient availability in soil and its uptake by plants:a review[J]. Proceedings of the National Academy of Sciences, India Section B:Biological Sciences, 2015,85(1):1-12.
[8] Gkarmiri K, Mahmood S, Ekblad A, et al. Identifying the active microbiome associated with roots and rhizosphere soil of oilseed rape[J]. Appl. Environ. Microbiol.,2017,83(22):e01938-17.
[9] Fraser T D, Lynch D H, Gaiero J, et al. Quantification of bacterial non-specific acid (phoC) and alkaline (phoD) phosphatase genes in bulk and rhizosphere soil from organically managed soybean fields[J]. Applied Soil Ecology, 2017,111:48-56.
[10] Sillen W M A, Thijs S, Abbamondi G R, et al. Effects of silver nanoparticles on soil microorganisms and maize biomass are linked in the rhizosphere[J]. Soil Biology and Biochemistry, 2015,91:14-22.
[11] Galaviz C, Lopez B R, de-Bashan L E, et al. Root growth improvement of mesquite seedlings and bacterial rhizosphere and soil community changes are induced by inoculation with plant growth-promoting bacteria and promote restoration of eroded desert soil[J]. Land Degradation & Development, 2018,29(5):1453-1466.
[12] Yang H, Hu J, Long X, et al. Salinity altered root distribution and increased diversity of bacterial communities in the rhizosphere soil of Jerusalem artichoke[J]. Scientific Reports, 2016,6:20687.
[13] 褚洪龙,李莎,唐明.黄土高原油松根际土壤酶活性及真菌群落多样性研究:以黄龙山林场为例[J].土壤学报,2015,52(1):154-161.
[14] 邱甜甜,刘国彬,王国梁,等.黄土高原不同生长阶段油松人工林土壤微生物生物量碳的变化及其影响因素[J].应用生态学报,2016,27(3):681-687.
[15] 包士旦.土壤农化分析[M].北京:科学出版社,2000.
[16] Fan K, Weisenhorn P, Gilbert J A, et al. Wheat rhizosphere harbors a less complex and more stable microbial co-occurrence pattern than bulk soil[J]. Soil Biology and Biochemistry, 2018,125:251-260.
[17] Zhang C, Lin Y, Tian X, et al. Tobacco bacterial wilt suppression with biochar soil addition associates to improved soil physiochemical properties and increased rhizosphere bacteria abundance[J]. Applied Soil Ecology, 2017,112:90-96.
[18] Daly K R, Mooney S J, Bennett M J, et al. Assessing the influence of the rhizosphere on soil hydraulic properties using X-ray computed tomography and numerical modelling[J]. Journal of Experimental Botany, 2015,66(8):2305-2314.
[19] Li H, Yang X, Weng B, et al. The phenological stage of rice growth determines anaerobic ammonium oxidation activity in rhizosphere soil[J]. Soil Biology and Biochemistry, 2016,100:59-65.
[20] Cui Y, Fang L, Guo X, et al. Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, China[J]. Soil Biology and Biochemistry, 2018,116:11-21.
[21] McPherson M R, Wang P, Marsh E L, et al. Isolation and Analysis of Microbial Communities in Soil, Rhizosphere, and Roots in Perennial Grass Experiments[J]. Journal of Visualized Experiments:Jove, 2018, 137(3):579-583.
[22] Qiao Q, Wang F, Zhang J, et al. The variation in the rhizosphere microbiome of cotton with soil type, genotype and developmental stage[J]. Scientific Reports, 2017,7(1):3940.
[23] Li Z, Zu C, Wang C, et al. Different responses of rhizosphere and non-rhizosphere soil microbial communities to consecutive Piper nigrum L. monoculture[J]. Scientific Reports, 2016,6:35825.
[24] Sreevidya M, Gopalakrishnan S, Kudapa H, et al. Exploring plant growth-promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea[J]. Brazilian Journal of Microbiology, 2016,47(1):85-95.
[25] Kibbey T C G, Strevett K A. The effect of nanoparticles on soil and rhizosphere bacteria and plant growth in lettuce seedlings[J]. Chemosphere, 2019, 221:703-707.
[26] Oburger E, Schmidt H. New methods to unravel rhizosphere processes[J]. Trends in Plant Science, 2016,21(3):243-255.

相似文献/References:

[1]杨秉珣,刘泉,王彬.嘉陵江流域不同类型植被多样性与土壤养分和酶活性的关系[J].水土保持研究,2016,23(06):45.
 YANG Bingxun,LIU Quan,WANG Bin.Relationships Between Soil Nutrients, Soil Enzyme Activity and Plant Diversity of Different Types of in Jialing River Basin, Sichuan[J].,2016,23(06):45.
[2]刘占仁,王立志.不同土地利用方式对土壤养分及肥力的影响[J].水土保持研究,2012,19(06):72.
 LIU Zhan-ren,WANG Li-zhi.Effect of Different Land Use on Soil Nutrient and Soil Fertility[J].,2012,19(06):72.
[3]张小娟,高照良,李晶,等.关中平原高速公路路堤边坡土壤养分与植被群落α多样性变化[J].水土保持研究,2012,19(06):157.
 ZHANG Xiao-juan,GAO Zhao-liang,LI Jing,et al.Variation of Soil Nutrients and Mode of α Diversity of Plant Community on the Embankment Slope of Highways in Guanzhong Plain[J].,2012,19(06):157.
[4]王巧利,贾燕锋,王宁,等.黄土丘陵沟壑区自然恢复坡面植物根系的分布特征[J].水土保持研究,2012,19(05):16.
 WANG Qiao-li,JIA Yan-feng,WANG Ning,et al.Distribution of Root on Vegetation Recovery Slope in the Hilly and Gully Loess Plateau[J].,2012,19(06):16.
[5]阳利永,吴献花,赵斌,等.滇池柴河流域不同土地利用方式土壤养分剖面分异[J].水土保持研究,2012,19(05):95.
 YANG Li-yong,WU Xian-hua,ZHAO Bin,et al.Effects of Different Land Uses on Profile Variability of Soil Nutrients in Chaihe Basin of Dianchi Lake[J].,2012,19(06):95.
[6]潘树林,周顺涛,辜彬.坡度和坡位对岩质边坡早期生态恢复土壤养分变异性的影响[J].水土保持研究,2012,19(04):289.
 PAN Shu-lin,ZHOU Shun-tao,GU Bin.Effect of Slope Degree and Slope Position on Soil Nutrient Variability in the Early Succession of Rocky Slope Revegetation[J].,2012,19(06):289.
[7]张洋,刘华,王得祥,等.商洛地区不同林龄油松人工林土壤理化性质研究[J].水土保持研究,2012,19(03):82.
 ZHANG Yang,LIU Hua,WANG De-xiang,et al.Study on Soil Physicochemical Properties along Forest Age of Pinus tabulaeformis Plantations[J].,2012,19(06):82.
[8]刘向东,吴钦孝,赵鸿雁,等.黄土丘陵区油松人工林和山杨林林冠对降水的再分配及其对土壤水分的影响[J].水土保持研究,1991,(02):9.
 Liu Xiangdong,Wu Qinxiao,Zhao Hongyan,et al.REDISTRIBUTION OF PRECIPITATION BY CANOPIES OF ARTIFICIAL CHINESE PINES AND MOUNTAIN POPLARS AND ITS INFLUENCE ON SOIL MOISTURE IN LOESS HILLY REGION[J].,1991,(06):9.
[9]吴钦孝,刘向东,赵鸿雁.油松、山杨林枯枝落叶层蓄积动态的研究[J].水土保持研究,1991,(02):51.
 Wu Qinxiao,Liu Xiangdong,Zhao Hongyan.A STUDY ON DYNAMICS OF LITTER AMOUNT IN FOREST STANDS OF CHINESE PINE AND MOUNTAIN POPLAR[J].,1991,(06):51.
[10]赵鸿雁,刘向东,吴钦孝.枯枝落叶层阻延径流速度研究[J].水土保持研究,1991,(02):64.
 Zhao Hongyan,Liu Xiangdong,Wu Qinxiao.A STUDY ON RETARDATION OF RUNOFF VELOCITY BY LITTER[J].,1991,(06):64.

备注/Memo

备注/Memo:
收稿日期:2019-03-11;改回日期:2019-03-22。
基金项目:山东省教育厅重点课题"人工林土壤微生物活性及其生态环境效应"(XH471287-3)
作者简介:范媛媛(1985-),女,山东济南人,硕士,讲师,研究方向:微生物学。E-mail:yuanyuan8590@163.com
通讯作者:李懿(1981-),男,四川成都人,博士,助理研究员,研究方向:微生物学、资源与环境微生物。E-mail:Leeyii_811@163.com
更新日期/Last Update: 1900-01-01