[1]杜浩,张成福,程宇琪,等.大兴安岭天然林不同林分溶解有机碳变化特征[J].水土保持研究,2019,26(06):46-52.
 DU Hao,ZHANG Chengfu,CHENG Yuqi,et al.Change Characteristics of Dissolved Organic Carbon (DOC) in Natural Forests of Greater Khingan Mountains Region[J].,2019,26(06):46-52.
点击复制

大兴安岭天然林不同林分溶解有机碳变化特征()
分享到:

《水土保持研究》[ISSN:1005-3409/CN:61-1272/P]

卷:
26卷
期数:
2019年06期
页码:
46-52
栏目:
出版日期:
2019-10-17

文章信息/Info

Title:
Change Characteristics of Dissolved Organic Carbon (DOC) in Natural Forests of Greater Khingan Mountains Region
作者:
杜浩 张成福 程宇琪 王雨晴 潘思涵 杨宇娜
内蒙古农业大学 沙漠治理学院, 呼和浩特 010010
Author(s):
DU Hao ZHANG Chengfu CHENG Yuqi WANG Yuqing PAN Sihan YANG Yuna
College of Desert Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010010, China
关键词:
大兴安岭树干径流有机质层土壤溶解有机碳
Keywords:
Greater Khingan Mountainsstemfloworganic matter layersoildissolved organic carbon (DOC)
分类号:
S714.2
摘要:
为确定不同林分和季节变化对森林碳库影响。在内蒙古大兴安岭根河林业局境内选取具有代表性的林分,即白桦林、白桦落叶松混交林以及落叶松林为研究对象。收集并测定了树干径流、有机质层和0-30 cm土层中DOC浓度,并分析了DOC变化特征以及不同月份对DOC的影响。结果表明:不同林分中树干径流中DOC平均浓度分别为60.12,172.77,205.02 mg/L;有机质层中DOC平均浓度分别为35.32,39.64,34.45 mg/L;0-30 cm土层中DOC平均浓度分别为26.23,37.08,26.53 mg/L。结果表明:不同林分中DOC浓度表现为树干径流 > 有机质层 > 0-30 cm土层,落叶松林树干径流DOC浓度明显高于白桦林(p<0.05),且落叶松树干比白桦树干淋溶DOC强;不同林分中有机质层和0-30 cm土层表现为白桦落叶松混交林>白桦林、落叶松林,但无明显的差异(p>0.05),而且有机质层和土层对DOC有吸附固定作用;不同林分6-9月份树干径流中DOC浓度呈现先升高后降低的趋势,7月份达到最大,机质层和0-30 cm土层中DOC浓度6月份最高,7月、8月最低,而9月份又升高。不同林分和月份的变化,影响了天然林中DOC浓度分布。
Abstract:
In order to determine the effects of different forest stands and seasonal changes on forest carbon pool, the representative stands of Birch forest, Birch forest and Larix gmelinii mixed forests and Larix gmelinii forests were selected in Genhe Forestry Bureau of Greater Khingan Mountains region, Inner Mongolia. Dissolved organic carbon (DOC) concentrations in stemflow, organic matter layer and 0-30 cm soil layer were collected and measured. The variation characteristics of DOC and the effects of different months on DOC were analyzed. The results show that the average concentrations of DOC in stemflow of different stands are 60.12, 172.77, 205.02, 35.32, 39.64, 34.45 mg/L in organic matter layer, 26.23 mg/L, 37.08 mg/L, 26.53 mg/L in 0-30 cm soil layer, respectively. DOC concentration in different stands decreases in the order:stemflow > organic layer > 0-30 cm soil layer, and the DOC concentration in stemflow of Larix gmelinii forest is significantly higher than that of Birch forest forest (p<0.05), and the DOC concentration in the trunk of Larix gmelinii forest is higher than that in the trunk of Birch forest. DOC concentrations of the organic layer and 0-30 cm soil layer in different stands decrease in the order:Mixed forest of larch and birch>Birch forest and Larix gmelinii forest, but there is no significant difference (p>0.05). Organic and soil layers can adsorb and fix DOC. The concentration of DOC in stemflow increases first and then decreases from June to September and reaches the maximum in July. The concentration of DOC reaches the highest in June in organic layer and 0-30 cm soil layer, the lowest in July and August, and then increases in September. The variation of DOC concentration in different stands and months affects the distribution characteristics of DOC concentrations in natural forests.

参考文献/References:

[1] Lynch J M, Bragg E. Microorganisms and soil aggregate stability[M]. New York:Springer Verlag, 1985.
[2] Abiven S, Menasseri S, Chenu C. The effects of organic inputs over time on soil aggregate stability:A literature analysis[J]. Soil Biology & Biochemistry, 2009,41(1):1-12.
[3] Kalbitz K, Kaiser K. Contribution of dissolved organic matter to carbon storage in forest mineral soils[J]. Journal of Plant Nutrition and Soil Science, 2008,171(1):52-60.
[4] Luan J, Xiang C, Liu S, et al. Assessments of the impacts of Chinese fir plantation and natural regenerated forest on soil organic matter quality at Longmen mountain, Sichuan, China[J]. Geoderma, 2010,156(3/4):228-236..
[5] Currie W S, Aber J D. Modelling leaching as a decomposition process in humid Montane forests[J]. Ecology, 1997,78(6):1844-1860.
[6] 熊丽,杨玉盛,朱锦懋,等.可溶性有机碳在米槠天然林不同土层中的迁移特征[J].生态学报,2015,35(17):5711-5720.
[7] 俞元春,何晟, Wang G. Geoff,等.杉木林土壤渗滤水溶解有机碳含量与迁移[J].林业科学,2006,42(1):122-125.
[8] Zhang C, Jamieson R C, Meng F R, et al. Long-term forest-floor litter dynamics in Canada’s boreal forest:Comparison of two model formulations[J]. Ecological Modelling, 2011,222(6):1236-1244.
[9] 杨丽丽,王彦辉,杜敏,等.六盘山典型森林伴随降水的总有机碳(TOC)通量变化特征[J].生态学报,2014,34(21):6297-6308.
[10] 方精云,陈安平,赵淑清,等.中国森林生物量的估算[J].植物生态学报.2002,26(2):243-249.
[11] Edmonds R L, Thomas T B, Blew R D. Biogeochemistry of an Old-Growth Forested Watershed, Olympic National Park, Washington[J]. Journal of the American Water Resources Association, 1995,31(3):409-419.
[12] Inagaki M, Sakai M, Ohnuki Y. The effects of organic carbon on acid rain in a temperate forest in Japan[J]. Water Air and Soil Pollution, 1995,85(4):2345-2350.
[13] Ciglasch H, Lilienfein J, Kaiser K, et al. Dissolved organic matter under native Cerrado and Pinus caribaea plantations in the Brazilian savanna[J]. Biogeochemistry, 2004,67(2):157-182.
[14] 吕茂奎,谢锦升,江淼华,等.米槠常绿阔叶次生林和杉木人工林穿透雨和树干径流可溶性有机质浓度和质量的比较[J].应用生态学报,2014,25(8):2201-2208.
[15] 郭璐璐,李安迪,商宏莉,等.川西贡嘎山不同森林生态系统土壤有机碳垂直分布与组成特征[J].中国农业气象,2018,39(10):636-643.
[16] 肖慈英,黄青春,阮宏华.松、栎纯林及混交林凋落物分解特性研究[J].土壤学报,2002,39(5):763-767.
[17] 任寅榜,吕茂奎,江军,等.侵蚀退化地植被恢复过程中芒萁对土壤可溶性有机碳的影响[J].生态学报,2018,38(7):2288-2298.
[18] Klotzbücher T, Kaiser K, Stepper C, et al. Long-term litter input manipulation effects on production and properties of dissolved organic matter in the forest floor of a Norway spruce stand[J]. Plant and Soil, 2012,355(1/2):407-416.
[19] Malhi Y, Baldocchi D D, Jarvis P G. The carbon balance of tropical, temperate and boreal forests[J]. Plant Cell & Environment, 2010,22(6):715-740.
[20] Loranger G, Ponge J F, Imbert D, et al. Leaf decomposition in two semi evergreen tropical forests:influence of litter quality[J]. Biology and Fertility Soil, 2002,35(4):247-252.
[21] 牛晓燕,刘志强,赵晶晶,等.大兴安岭森林火烧后不同演替阶段土壤细菌多样性动态[J].微生物学通报,2017,44(8):1825-1833.
[22] Liu C P, Sheu B H. Dissolved organic carbon in precipitation, throughfall, stemflow, soil solution, and stream water at the Guandaushi subtropical forest in Taiwan[J]. Forest Ecology and Management, 2003,172(2/3):315-325.
[23] 舒洋,周梅,赵鹏武,等.兴安落叶松人工林土壤碳密度分布特征研究[J].西北农林科技大学学报:自然科学版,2017,45(6):44-52.
[24] 范跃新,杨玉盛,杨智杰,等.中亚热带常绿阔叶林不同演替阶段土壤活性有机碳含量及季节动态[J].生态学报,2013,33(18):5751-5759.
[25] 张晓勉,高智慧,高洪娣,等.基岩质海岸防护林主要林分类型土壤抗冲性研究[J].浙江林业科技,2012,32(5):1-4.
[26] 苟小林,吴福忠,杨万勤,等.季节性冻融格局变化对高山森林土壤DOC淋洗的影响[J].水土保持学报,2013,27(6):205-210.
[27] Tipping E, Marker A F H, Butterwick C, et al. Organic carbon in the Humber rivers[J]. Science of the Total Environment, 1997,194:345-355.
[28] 赵鹏武.大兴安岭兴安落叶松林凋落物动态与养分释放规律研究[D].呼和浩特:内蒙古农业大学,2009.
[29] Zhang C, Jamieson R C, Meng F R, et al. Projecting in-stream dissolved organic carbon and total mercury concentrations in small watersheds following forest growth and clearcutting[J]. Water, Air, & Soil Pollution, 2016,227(9),DOI:10.1007/s11270-016-3017-6.
[30] Michalzik B, Matzner E. Dynamics of dissolved organic nitrogen and carbon in a Central European Norway spruce ecosystem[J]. European Journal of Soil Science, 2010,50(4):579-590.
[31] Kalbitz K, Solinger S, Park J H. Controls on the dynamics of dissolved organic matter in soils:A review[J]. Soil Science, 2000,165(4):277-304.
[32] 郭剑芬,杨玉盛,林鹏,等.木荷与杉木人工林枯枝落叶层溶解有机碳浓度及季节动态[J].厦门大学学报:自然科学版,2006,45(2):289-292.
[33] 刘帅,陈玥希,孙辉,等.西南亚高山-高山海拔梯度上森林土壤水溶性有机碳时间动态[J].西北林学院学报,2015,30(1):33-38.
[34] 张金波,宋长春,杨文燕.小叶章湿地表土水溶性有机碳季节动态变化及影响因素分析[J].环境科学学报,2005,25(10):1397-1402.
[35] Nambu K, Yonebayashi K. Role of dissolved organic matter in translocation of nutrient cations from organic layer materials in coniferous and broad leaf forests[J]. Soil Science and Plant Nutrition, 1999,45(2):307-319.

备注/Memo

备注/Memo:
收稿日期:2019-01-21;改回日期:2019-02-25。
基金项目:国家自然科学基金(41461106);内蒙古农业大学引进人才科研启动项目(YJ2014-1)
作者简介:杜浩(1992-),男,陕西榆林人,硕士研究生,研究方向为水土保持。E-mail:1053218830@qq.com
通讯作者:张成福(1966-),男,内蒙古四子王旗人,教授,主要从事水土保持研究。E-mail:2651534893@qq.com
更新日期/Last Update: 1900-01-01