[1]尤俊坚,谢凯旋,孙蕾,等.城市污泥生物质炭对豫东黄泛平原风沙土耕地土壤有机碳矿化影响[J].水土保持研究,2019,26(06):12-17.
 YOU Junjian,XIE Kaixuan,SUN Lei,et al.Influence of Sewage Sludge Biochar Application on Mineralization of Organic Carbon of Sandy Soil in the Yudong Plain[J].,2019,26(06):12-17.
点击复制

城市污泥生物质炭对豫东黄泛平原风沙土耕地土壤有机碳矿化影响()
分享到:

《水土保持研究》[ISSN:1005-3409/CN:61-1272/P]

卷:
26卷
期数:
2019年06期
页码:
12-17
栏目:
出版日期:
2019-10-17

文章信息/Info

Title:
Influence of Sewage Sludge Biochar Application on Mineralization of Organic Carbon of Sandy Soil in the Yudong Plain
作者:
尤俊坚1 谢凯旋1 孙蕾1 刘霞1 胡续礼2 苏新宇1 吴畏2
1. 南京林业大学 林学院 江苏省水土保持与生态修复重点实验室/南方现代林业协同创新中心, 南京 210037;
2. 水利部 淮河水利委员会水土保持处, 安徽 蚌埠 233001
Author(s):
YOU Junjian1 XIE Kaixuan1 SUN Lei1 LIU Xia1 HU Xuli2 SU Xinyu1 WU Wei2
1. Jiangsu Key Laboratory of Soil and Water Conservation and Ecological Restoration/Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing 210037, China;
2. Branch of Soil and Water Conservation, Huaihe River Commission, Ministry of Water Resources, Bengbu, Anhui 233001, China
关键词:
豫东黄泛平原风沙土城市污泥生物质炭有机碳矿化
Keywords:
Yudong Plainsandy soilsewage sludge biocharorganic carbon mineralization
分类号:
S156.5
摘要:
为探讨城市污泥生物质炭对风沙土耕地作物产量、土壤有机碳及其矿化的影响,采用田间定位试验,设置5个处理,分别为20(B20),40(B40),60(B60)t/hm2生物质炭、无机肥(NPK)、对照(CK),以一级动力学理论为基础,对5个处理的土壤样品进行了室内培养试验。结果表明:(1)与CK相比,不同施量生物质炭处理较CK产量提高了21.30%,51.88%,41.06%,有机碳含量提高了18.30%,21.84%,29.62%。(2)不同处理土壤有机碳矿化速率随培养时间的动态变化特征呈对数函数关系,培养初期矿化速率先上升,之后迅速下降,最终趋于稳定,培养49 d后,NPK处理土壤有机碳累积矿化量最高,达到645.50 mg/kg,B40,B60次之,为449.53,401.33 mg/kg。(3)风沙土土壤有机碳矿化动态变化可以用一级动力学方程拟合,供试土壤潜在有机碳矿化库(Cp)和矿化速率常数(k)较高,分别为0.26~0.66 g/kg和(0.008 6~0.013 4)/d,与CK处理相比,B40,B60,NPK处理土壤有机碳矿化率提高55.93%~150.37%。上述结果显示豫东黄泛平原风沙土施用生物质炭可以提高土壤有机碳含量,对比NPK处理,减小了土壤有机碳累积矿化量、矿化率,增强土壤固碳能力,以40 t/hm2处理的效果更佳。研究结果可为豫东黄泛平原风沙土土壤碳储量增加、城市污泥的资源化利用提供科学依据。
Abstract:
In order to explore the effects of biochar on peanut yield, soil organic carbon and carbon mineralization dynamics, a field experiment was conducted. The experiment included 5 different treatments:biochar rates at 20 t/hm2 (B20), 40 t/hm2 (B40) and 60 t/hm2 (B60), inorganic fertilizers (NPK), the control (CK). The organic carbon mineralization was measured under the laboratory soil incubation experiment on the basis of the theory of soil organic carbon. The results showed that:(1) different application rates of biochar could significantly increase peanut yield and soil organic carbon by 21.30%, 51.88%, 41.06% and 18.30%, 21.84%, 29.62%, respectively; (2) the changes of soil organic carbon mineralization rate of each treatment followed the logarithmic relationship; the mineralization rate of soil organic carbon in each treatment increased first at the initial stage of incubation, then decreased rapidly and stabilized finally; after 49 days of incubation, the highest cumulative CO2 emission occurred in the NPK treatment (645.50 mg/kg), followed by B40 (449.53 mg/kg) and B60 (401.33 mg/kg); (3) the dynamics of SOC mineralization preferably followed the first order kinetics, the values of both Cp and k of all treatments were high, Cp ranged from 0.26 g/kg to 0.66 g/kg, and k ranged from 0.008 6 to 0.013 4 per day; compared with CK treatment, the soil organic carbon mineralization rates of B40, B60 and NPK treatment significantly increased (55.93%~150.37%). The above results indicated that the application of biochar to sandy soil in Yudong Plain could increase soil organic carbon, decrease cumulative CO2 emission and mineralization rate of soil organic carbon, and enhance soil carbon fixation capacity. This study can provide the scientific basis for improving soil carbon pool and the utilization of sewage sludge.

参考文献/References:

[1] Jr M J A, Gr?nli M. The art, science, and technology of charcoal production[J]. Industrial & Engineering Chemistry Research, 2003,42(8):1619-1640.
[2] Lehmann J, Rillig M C, Thies J, et al. Biochar effects on soil biota:A review[J]. Soil Biology & Biochemistry, 2011,43(9):1812-1836.
[3] Zhang A, Liu Y, Pan G, et al. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain[J]. Plant and Soil, 2012,351(1/2):263-275.
[4] 赵明,蔡葵,孙永红,等.污泥生物质炭的碳、氮矿化特性及其对大棚番茄产量品质的影响[J].中国农学通报,2014,30(1):215-220.
[5] Khan S, Waqas M, Ding F, et al. The influence of various biochars on the bioaccessibility and bioaccumulation of PAHs and potentially toxic elements to turnips(Brassica rapa L.)[J]. Journal of Hazardous Materials, 2015,300:243-253.
[6] 张婷,王旭东,逄萌雯,等.生物质炭和秸秆配合施用对土壤有机碳转化的影响[J].环境科学,2016,37(6):2298-2303.
[7] 张文菊,童成立,杨钙仁,等.水分对湿地沉积物有机碳矿化的影响[J].生态学报,2005,25(2):249-253.
[8] 匡崇婷,江春玉,李忠佩,等.添加生物质炭对红壤水稻土有机碳矿化和微生物生物量的影响[J].土壤,2012,44(4):570-575.
[9] Yao Q, Liu J, Yu Z, et al. Three years of biochar amendment alters soil physiochemical properties and fungal community composition in a black soil of northeast China[J]. Soil Biology & Biochemistry, 2017,110:56-67.
[10] 李顺姬,邱莉萍,张兴昌.黄土高原土壤有机碳矿化及其与土壤理化性质的关系[J].生态学报,2010,30(5):1217-1226.
[11] Zhou X, Chen C, Lu S, et al. The short-term cover crops increase soil labile organic carbon in southeastern Australia[J]. Biology & Fertility of Soils, 2012,48(2):239-244.
[12] Mandal S, Kunhikrishnan A, Bolan N S, et al. Application of Biochar Produced from Biowaste Materials for Environmental Protection and Sustainable Agriculture Production[C]//Prasad M N V, Kaimin Shih. Environmental Materials & Waste, Salt Lake City, USA:Elsevier Inc.,2016.
[13] Elnaggar A H, Usman A R, Alomran A, et al. Carbon mineralization and nutrient availability in calcareous sandy soils amended with woody waste biochar[J]. Chemosphere, 2015,138:67-73.
[14] Novak J M, Busscher W J, Watts D W, et al. Short-term CO2 mineralization after additions of biochar and switchgrass to a Typic Kandiudult[J]. Geoderma, 2010,154(3/4):281-288.
[15] Cheng H, Reinhard M. The rate of 2, 2-dichloropropane transformation in mineral micropores:Implications of sorptive preservation for fate and transport of organic contaminants in the subsurface[J]. Environmental Science & Technology, 2008,42(8):2879-2885.
[16] Barker G. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils[J]. Soil Biology & Biochemistry, 2011,43(6):1169-1179.
[17] Liang B, Lehmann J, Sohi S P, et al. Black carbon affects the cycling of non-black carbon in soil[J]. Organic Geochemistry, 2010,41(2):206-213.
[18] Zimmerman A R, Chorover J, Goyne K W, et al. Protection of mesopore-adsorbed organic matter from enzymatic degradation[J]. Environmental Science & Technology, 2004,38(17):4542-4548.
[19] 陈吉,赵炳梓,张佳宝,等.长期施肥潮土在玉米季施肥初期的有机碳矿化过程研究[J].土壤,2009,41(5):719-725.
[20] Elnaggar A H, Usman A R, Alomran A, et al. Carbon mineralization and nutrient availability in calcareous sandy soils amended with woody waste biochar[J]. Chemosphere, 2015,138:67-73.
[21] Clough T J, Condron L M, Kammann C, et al. A review of biochar and soil nitrogen dynamics[J]. Agronomy, 2013,3(2):275-293.
[22] Jeffreyl S, Haroldp C, Vanessal B. The effect of young biochar on soil respiration[J]. Soil Biology & Biochemistry, 2010,42(12):2345-2347.
[23] 王朔林,杨艳菊,王改兰,等.长期施肥对栗褐土有机碳矿化的影响[J].植物营养与肥料学报,2016,22(5):1278-1285.
[24] 杨莉琳,张福锁,毛仁钊,等.华北平原农田生态系统土壤C, N净矿化及尿素转化研究[J].植物营养与肥料学报,2007,13(5):824-830.
[25] Zheng J, Zhang X, Li L, et al. Effect of long-term fertilization on C mineralization and production of CH4 and CO2 under anaerobic incubation from bulk samples and particle size fractions of a typical paddy soil[J]. Agriculture Ecosystems & Environment, 2007,120(2):129-138.
[26] 郭振,王小利,段建军,等.长期施肥对黄壤性水稻土有机碳矿化的影响[J].土壤学报,2018,55(1):225-235.
[27] 王典,张祥,姜存仓,等.生物质炭改良土壤及对作物效应的研究进展[J].中国生态农业学报,2012,20(8):963-967.
[28] Nguyen B T, Lehmann J, Kinyangi J, et al. Long-term black carbon dynamics in cultivated soil[J]. Biogeochemistry, 2009,92(1/2):163-176.

相似文献/References:

[1]刘广通,海春兴,李占宏.应用吸管法进行风沙土机械组成分析的实验研究[J].水土保持研究,2007,14(02):121.
 LIU Guang-tong,HAI Chun-xing,LI Zhan-hong.The Study of Analyzing the Mechanical of Aeolian Sandy Soil Using Straw Based on Experiment[J].,2007,14(06):121.
[2]魏彬萌,赵宣.添加砒砂岩对风沙土性质的改良及时间效应[J].水土保持研究,2017,24(06):16.
 WEI Binmeng,ZHAO Xuan.Effect of Addition of Feldspathic Sandstone on Improvement of Aeolian Sand Soil Quality and the Time Effect[J].,2017,24(06):16.
[3]张有利,李娜,王孟雪,等.不同整地方式对风沙土玉米地土壤紧实度的影响[J].水土保持研究,2015,22(01):97.
 ZHANG Youli,LI Na,WANG Mengxue,et al.Effects of Different Fall Tillage Practices on Compaction of Windy and Soil in Maize Field[J].,2015,22(06):97.
[4]杨志孟,邹洪涛,周子铉,等.不同水分条件对东北风沙土花生生长发育及水分利用率的影响[J].水土保持研究,2015,22(04):52.
 YANG Zhimeng,ZOU Hongtao,ZHOU Zixuan,et al.Effect of Different Irrigation Water on Peanut Growth and Water Use Efficiency in the Aeolian Sandy Soil of the Northeast[J].,2015,22(06):52.

备注/Memo

备注/Memo:
收稿日期:2018-12-02;改回日期:2019-03-03。
基金项目:水利部淮河水利委员会"淮河流域黄泛区风力侵蚀定位观测项目"(HWSBC2016037)
作者简介:尤俊坚(1990-),男,江苏南京人,博士研究生,研究方向为生物质炭对风沙土的改良。E-mail:junjian_you@163.com
通讯作者:刘霞(1971-),女,山东菏泽人,博士,教授,博士生导师,主要从事水土保持监测与评价研究。E-mail:liuxia@njfu.edu.cn
更新日期/Last Update: 1900-01-01