[1]陈雪,宋娅丽,王克勤,等.基于Van Genuchten模型的等高反坡阶下土壤水分特征[J].水土保持研究,2019,26(05):45-52.
 CHEN Xue,SONG Yali,WANG Keqin,et al.Moisture Characteristics Under Contour Reverse-Slope Terrace Based on Van Genuchten Model[J].,2019,26(05):45-52.
点击复制

基于Van Genuchten模型的等高反坡阶下土壤水分特征()
分享到:

《水土保持研究》[ISSN:1005-3409/CN:61-1272/P]

卷:
26卷
期数:
2019年05期
页码:
45-52
栏目:
出版日期:
2019-09-06

文章信息/Info

Title:
Moisture Characteristics Under Contour Reverse-Slope Terrace Based on Van Genuchten Model
作者:
陈雪 宋娅丽 王克勤 王帅兵
西南林业大学 生态与水土保持学院, 昆明 650224
Author(s):
CHEN Xue SONG Yali WANG Keqin WANG Shuaibing
College of Ecology and Soil & Water Conservation, Southwest Forestry University, Kunming 650224, China
关键词:
等高反坡阶坡耕地土壤水分特征曲线Van Gennuchten模型持水性
Keywords:
contour reverse-slope terraceslope farmlandsoil water characteristic curveVan Genuchten modelwater-holding
分类号:
S152.7
摘要:
为了阐明等高反坡阶处理对土壤持水性的改善作用,选取滇中昆明市北郊松华坝迤者小流域为研究区,研究等高反坡阶对坡耕地0—100 cm土层土壤水分特征曲线的影响,使用vanFit软件拟合获得Van Genuchten模型参数,阐明各土层土壤持水性及其与影响因子的关系。结果表明:(1)等高反坡阶对坡上部影响不显著(p>0.05),对坡中部影响显著(p<0.05),对坡下部影响极显著(p<0.01);(2)与土壤水分特征曲线参数的关系中,容重和砂粒含量呈负相关,总孔隙度、毛管孔隙度和粉粒含量呈正相关;(3)模型拟合土壤水分特征曲线的决定系数R2均高于0.85,可靠性较高;原状坡耕地(1.719 6)和等高反坡阶处理坡耕地(1.773 5)的n值均在10—20 cm土层最大,土壤在10—20 cm土层的土壤含水率变化较大,等高反坡阶处理坡耕地的土壤含水率变化大于原状坡耕地;(4)原状坡耕地和等高反坡阶处理坡耕地均在10—20 cm土层供水性好,等高反坡阶处理坡耕地在40—60 cm土层持水能力强,而原状坡耕地在20—40 cm土层持水能力强。综上,等高反坡阶处理对坡耕地土壤的保水性能具有明显的提高作用,对坡耕地地表径流拦蓄、增加水分入渗和减少土壤流失起到了明显的改善作用。
Abstract:
In order to elucidate the effect of equal high reverse slope treatment on soil water retention, the small watershed of Yizhe in Songhuaba Dam in Kunming northern suburb of central Yunnan was selected as a research area in this study, and the influence of such contour reverse-slope terrace on soil water characteristic curve of 0-100 cm soil in sloping farmland was studied. Vanfit software was used to obtain Van Genuchten model parameters, and the relationship between water retention and its influencing factors in each soil layer was expounded. The results showed that:(1) the effect of contour reverse-slope terrace on the upper slope was not significant (p>0.05), its effect on the middle slope was significant (p<0.05), and its effect on the lower part of the slope was very significant (p<0.01); (2) in relation to the parameters of soil water characteristic curve, the bulk density and the content of sand grain were negatively correlated, and total porosity, capillary porosity and particle content were positively correlated; (3) the determining coefficients of the model fitting soil moisture characteristic curve were higher than 0.85, and the R2 was higher reliability; the n values of the undisturbed slope cultivated land (1.719 6) and the contour reverse-slope trrace treatment slope cultivated land (1.773 5) were the largest in the 10-20 cm soil layer; the change of soil moisture content in sloping farmland with contour reverse-slope terrace was greater than that of intact sloping farmland; (4) soil water availabilities is higher in 10-20 cm soil layers of the slope farmland of the original sloping farmland and the contour reverse-slope terrace treatment slope cultivated land, and water holding capacity in 40-60 cm soil layer of the slope farmland treated with contour reverse-slope terrace was strong, and water holding capacity in the 20-40 cm soil layer of the undisturbed sloping farmland was strong. In conclusion, sloping farmland soil under the treatment of contour reverse-slope terrace had the significant effect on the performance of soil water retention, which played an important role in improving the surface runoff interception, increasing water infiltration and reducing soil loss.

参考文献/References:

[1] 张芳枝,梁志松,周秋娟.非饱和土性状及其边坡稳定性[M].北京:中国水利水电出版社,2011.
[2] Rahimi A, Rahardjo H, Leong E C. Effects of soil-water characteristic curve and relative permeability equations on estimation of unsaturated permeability function[J]. Soils & Foundations, 2015,55(6):1400-1411.
[3] Tavakoli D M H, Habibagahi G, Nikooee E. Effect of confining stress on soil water retention curve and its impact on the shear strength of unsaturated soils[J]. Vadose Zone Journal, 2014,13(5):1-11.
[4] 潘成忠,上官周平.黄土半干旱丘陵区陡坡地土壤水分空间变异性研究[J].农业工程学报,2003,19(6):5-9.
[5] 冉艳玲,王益权,张润霞,等.保水剂对土壤持水特性的作用机理研究[J].干旱地区农业研究,2015,33(5):101-107.
[6] 俞建荣.我国不同生态类型烟区土壤持水性能及水分有效性研究[D].南京:河海大学,2007.
[7] 韩祥伟,邵明安,王全九.简单入渗法在确定Brooks-Corey水分特征曲线模型参数中的应用研究[J].土壤学报,2006,43(3):506-508.
[8] Gardner W R. Field measurement of soil water diffusivity[J]. Proceedings Soil Science Society of America, 1970,34(5):832-833.
[9] 邹朝望,薛绪掌,张仁铎.基于两组负水头入渗数据推求Brooks-Corey模型中的参数[J].农业工程学报,2006,22(8):1-6.
[10] Fredlund D G, Xing A. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994,31(4):521-532.
[11] Genuchten M T V. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils1[J]. Soil Science Society of America Journal, 1980,44(5):892-898.
[12] Ghanbarian-Alavijeh B, Liaghat A, Huang G H, et al. Estimation of the Van Genuchten soil water retention properties from soil textural data[J]. Pedosphere, 2010,20(4):456-465.
[13] Lei W J, Tang X Y, Reid B J, et al. Spatial distribution of soil hydraulic parameters estimated by pedotransfer functions for the Jialing River Catchment, Southwestern China[J].山地科学学报:英文,2016,13(1):29-45.
[14] Wang Y, Shao M, Han X, et al. Spatial Variability of Soil Parameters of the van Genuchten Model at a Regional Scale[J]. Clean-Soil Air Water, 2015,43(2):271-278.
[15] 来剑斌,王全九.土壤水分特征曲线模型比较分析[J].水土保持学报,2003,17(1):137-140.
[16] Fredlund M D, Fredlund D G, Wilson G W. Prediction of the soil-water characteristic curve from grain-size distribution and volume-mass properties[C]//3 Rd Brazilian Symposium on Unsaturated Soils, Rio De Janeiro, Brazil, 1997:13-23.
[17] 牛晓彤,刘目兴,易军,等.三峡山地土壤水分特征曲线及模型拟合[J].灌溉排水学报,2017,36(9):75-80.
[18] 李兴,勾芒芒,屈忠义,等.生物炭对沙壤土水分特征的影响[J].江苏农业科学,2018,46(12):280-283.
[19] 赵文娟,李春光,梁晨瞡.宁夏银北非饱和盐渍土水分特征曲线拟合研究[J].人民黄河,2014,36(1):92-94.
[20] Simunek J, Genuchten M T V. Estimating unsaturated soil hydraulic properties from multiple tension disc infiltrometer data[J]. Soil Science, 1997,162(6):383-398.
[21] 赵春雷,邵明安,贾小旭.黄土高原北部坡面尺度土壤饱和导水率分布与模拟[J].水科学进展,2014,25(6):806-815.
[22] Heli Z, Dingsheng J, Xingke F. Effect of different soil and water conservation measures to rainfall redistribution on slope[J]. Research of Soil & Water Conservation, 1996,3(2):75-83.
[23] 王帅兵,王克勤,宋娅丽,等.等高反坡阶对昆明市松华坝水源区坡耕地氮、磷流失的影响[J].水土保持学报,2017,31(6):39-45.
[24] 华锦欣,王克勤,张香群,等.等高反坡阶对坡耕地土壤水分空间分布的影响:以昆明松花坝水源区为例[J].人民长江,2016,47(1):11-14.
[25] 陈敏全,王克勤.等高反坡阶对坡耕地土壤碳库的影响[J].水土保持通报,2015,35(6):41-46.
[26] 杨绪,赵廷超,王丰,等.基于Gardner模型的黔西南土壤水分特征分析[J].灌溉排水学报,2018,37(7):35-42.
[27] 王修康,戚兴超,刘艳丽,等.泰山山前平原3种土地利用方式下土壤结构特征及其对土壤持水性的影响[J].自然资源学报,2018,33(1):63-74.
[28] 邹文安,姜波,顾李华.土壤水分常数的测定[J].水文,2015,35(4):62-66.
[29] 中国科学院南京土壤研究所土壤物理研究室编.土壤物理性质测定法[M].北京:科学出版社,1978.
[30] 程鹏,高抒,李徐生.激光粒度仪测试结果及其与沉降法、筛析法的比较[J].沉积学报,2001,19(3):449-455.
[31] 程子捷,张海东,蒋芳市,等.安溪县花岗岩崩岗土体水分特征曲线及其影响因素[J].水土保持学报,2018,32(3):120-125.
[32] Genuchten M T V. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980,44(5):892-898.
[33] 赵世平,刘建生,杨改强,等.粒径对土壤水分特征曲线的影响研究[J].太原科技大学学报,2008,29(4):332-334.
[34] 韩国君,陈年来,黄海霞,等.钾肥类型与施用量对土壤持水特性的影响[J].干旱区资源与环境,2013,27(6):26-29.
[35] 高会议,郭胜利,刘文兆,等.不同施肥土壤水分特征曲线空间变异[J].农业机械学报,2014,45(6):161-165.
[36] 程冬兵,张平仓,赵健,等.三峡库区不同水保措施下紫色土水分特征曲线特征及模型拟合[J].长江流域资源与环境,2009,18(11):1045-1049.
[37] Hudson B D. Soil organic matter and available water capacity[J]. Journal of Soil & Water Conservation, 1994,49(2):189-194.
[38] 李彬楠,樊贵盛.基于灰色理论-BP神经网络方法的土壤水分特征曲线预测模型[J].干旱区资源与环境,2018,32(7):166-171.
[39] 王红兰,唐翔宇,宋松柏.土壤水分特征曲线测定中低吸力段数据的影响分析[J].灌溉排水学报,2012,31(6):56-59.
[40] 霍丽涛,唐啸宇,郄志红,等.新型液态土壤调理剂对土壤持水特性的影响[J].河北农业大学学报,2018,41(3):112-116.

相似文献/References:

[1]宋玥,张忠学.不同耕作措施对黑土坡耕地土壤侵蚀的影响[J].水土保持研究,2011,18(02):14.
 SONG Yue,ZHANG Zhong-xue.The Effect of Different Tillage Measures on Soil Erosion in Slope Farmland in Black Soil Region[J].,2011,18(05):14.
[2]康万利,揭雨成,邢虎成.南方坡耕地种植苎麻水土保持效果和经济效益研究[J].水土保持研究,2012,19(03):86.
 KANG Wan-li,JIE Yu-cheng,XING Hu-cheng.Study of Soil-Water Conservation Effects and Economic Benefit of Ramie in South Slope Crop Land[J].,2012,19(05):86.
[3]吴素业.皖西南山区坡耕地水土流失防治措施[J].水土保持研究,1996,3(04):38.
 Wu Suye.The Control Practice of Water and Soil Loss in Hillside Fields of Southwestern Mountain Area of Anhui Province[J].,1996,3(05):38.
[4]林永知.丘陵地区坡耕地水土流失动态监测分析[J].水土保持研究,1997,4(01):120.
 Lin Yongzhi.Analysis on the Dynamic Monitoring of Soil and Water Loss of Slope Farmland in Hilly Area[J].,1997,4(05):120.
[5]高岚,王振颖.辽宁省坡耕地资源普查及成果分析[J].水土保持研究,1997,4(04):44.
 Gao Lan,Wang Zhenying.General Survey of Hillyland Resources and Result Analysis in Liaoning Province[J].,1997,4(05):44.
[6]孙景华,杨玉阁,张本家,等.辽北低山丘陵区坡耕地水土流失规律研究[J].水土保持研究,1997,4(04):65.
 Sun Jinghua,Yang Yuge,Zhang Benjia,et al.Hilly Field Erosion Regulation in Low Mountain Region of Northern Liaoning[J].,1997,4(05):65.
[7]庞小明.坡耕地地膜小麦栽培技术研究初报[J].水土保持研究,1998,5(04):62.
 Pang Xiaoming.The Culture Technology of Plastic Film Wheat in Slope Field[J].,1998,5(05):62.
[8]彭珂珊.黄土高原水土流失区退耕还林(草)的基本思路[J].水土保持研究,2000,7(02):164.
 PENG Keshan.Thinking for Returning the Grain Plots to Forest and Grass Lands in Soil and Water Loess Areas on Loss Plateau[J].,2000,7(05):164.
[9]李凤,张如良.坡耕地实行保土耕作的效益试验分析[J].水土保持研究,2000,7(03):184.
 LI Feng,ZHANG Ru-liang.Experiment Analysis on Cultivation by Conserving Soil in Sloping Fields[J].,2000,7(05):184.
[10]张永涛,王洪刚,李增印,等.坡改梯的水土保持效益研究[J].水土保持研究,2001,8(03):9.
 ZHANG Yong-tao,WANG Hong-gang,LI Zeng-yin,et al.Soil and Water Conservation Benefits of Terracing on the Slope[J].,2001,8(05):9.
[11]陈雪,宋娅丽,王克勤.等高反坡阶措施对滇中红壤坡耕地土壤贮水量的影响[J].水土保持研究,2019,26(06):92.
 CHEN Xue,SONG Yali,WANG Keqin.Effect of Contour Reverse-Slope Terrace Measures on Soil Water Storage in Sloping Farmland of Red Soil in Central Yunnan Province[J].,2019,26(05):92.

备注/Memo

备注/Memo:
收稿日期:2018-11-04;改回日期:2018-11-27。
基金项目:云南省科技计划重点研发项目(2018BB018);国家自然科学基金(30660037);云南省应用基础研究青年项目(2016FD044)
作者简介:陈雪(1992-),女,山东泰安人,硕士,主要从事土壤水分特征研究。E-mail:13053862529@163.com
通讯作者:王克勤(1964-),男,甘肃庄浪人,博导,教授,主要从事小流域环境综合治理的理论与技术研究。E-mail:wangkeqin7389@sina.com
更新日期/Last Update: 1900-01-01