[1]李伯祥,陈晓勇,徐雯婷.基于水云模型的Sentinel-1A双极化反演植被覆盖区土壤水分[J].水土保持研究,2019,26(05):39-44.
 LI Boxiang,CHEN Xiaoyong,XU Wenting.Inversion of Soil Moisture in Vegetation-Covered Areas by Sentinel-1A Dual Polarization Based on Water Cloud Model[J].,2019,26(05):39-44.
点击复制

基于水云模型的Sentinel-1A双极化反演植被覆盖区土壤水分()
分享到:

《水土保持研究》[ISSN:1005-3409/CN:61-1272/P]

卷:
26卷
期数:
2019年05期
页码:
39-44
栏目:
出版日期:
2019-09-06

文章信息/Info

Title:
Inversion of Soil Moisture in Vegetation-Covered Areas by Sentinel-1A Dual Polarization Based on Water Cloud Model
作者:
李伯祥1 陈晓勇123 徐雯婷1
1. 东华理工大学 测绘工程学院, 南昌 330013;
2. 流域生态与地理环境监测 国家测绘地理信息局重点实验室, 南昌 330013;
3. 江西省数字国土重点实验室, 南昌 330013
Author(s):
LI Boxiang1 CHEN Xiaoyong123 XU Wenting1
1. School of Geomatics, East China University of Technology, Nanchang 330013, China;
2. Key Laboratory of Watershed Ecology and Geographical Environment Monitoring, Nanchang 330013, China;
3. Jiangxi Province Key Laboratory for Digital Land, Nanchang 330013, China
关键词:
主被动微波土壤水分水云模型双极化
Keywords:
active and passive microwavesoil moisturewater coud modeldual polarization
分类号:
P237
摘要:
根据开展的景县地区玉米农田主被动微波遥感协同反演土壤水分监测试验,提出利用FY-3 B WMRI被动微波数据计算微波极化差异指数(MPDI),建立了植被层含水量反演模型,去除植被含水量对于农田土壤水分反演的影响,然后结合植被层含水量反演模型和水云模型,以及Sentinel-1A主动微波数据和部分实测样点土壤体积含水量数据建立植被覆盖区农田土壤水分半经验反演模型,最后验证分析Sentinel-1A VV/VH不同极化条件下土壤水分反演模型的精度。结果表明:VV极化条件下土壤水分反演模型反演精度为R2=0.7422,RMSE=0.0674 cm3/cm3,MAE=0.0305 cm3/cm3,MaxE为0.1196 cm3/cm3,MinE=0.0024 cm3/cm3;VH极化模型为R2=0.1898,RMSE=0.0768 cm3/cm3,MAE=0.0474 cm3/cm3,MaxE=0.1933 cm3/cm3,MinE=0.0190 cm3/cm3。研究区VH极化模型反演值存在普遍偏低现象,VV极化模型土壤水分反演结果优于VH极化模型。VV极化方式具有更强的穿透性,受到植被层衰减作用影响较小,对土壤水分含量变化也更为敏感。建立的VV极化条件下土壤水分反演半经验模型能较好地表征研究区土壤水分空间分布情况。
Abstract:
A collaborative inversion monitoring experiment of active and passive microwave remote sensing for soil moisture in maize farmland in Jingxian County was carried out. Firstly, the microwave polarization difference index (MPDI) was calculated by using FY-3B WMRI passive microwave data, and the water content of vegetation layer inversion model was established to remove the influence of vegetation water content on farmland soil moisture inversion. Then, a semi-empirical inversion model of farmland soil moisture in vegetation-covered area was established by combining with the vegetation water content inversion model, water cloud model, the Sentinel-1A active microwave data and some measured soil water content data. Finally, the accuracy of semi-empirical inversion model was verified and analyzed under different sentinel-1A VV/VH polarization conditions. The results show that the accuraces of soil moisture inversion values under VV polarization condition can be characterized by R2(0.7422), RMSE (0.0674) cm3/cm3, MAE (0.0305 cm3/cm3), Max R2, (0.1196 cm3/cm3), MinE (0.0024 cm3/cm3); R2(0.1898),RMSE (0.0768 cm3/cm3), MAE (0.0474 cm3/cm3), MaxE(0.1933 cm3/cm3), MinE (0.0190 cm3/cm3) under VH polarization condition. The inversion values of the VH polarization model in the study area were generally low, and the soil moisture inversion results of the VV polarization model were better than that of the VH polarization model. The VV polarization mode has stronger penetrability which is less affected by the attenuation of the vegetation layer, and is more sensitive to the changes in soil moisture content. The semi-empirical model of soil moisture inversion under VV polarization condition can better reflect the spatial distribution of soil moisture in the study area.

参考文献/References:

[1] 安淳淳,王飞,焦俏,张雨果.华北平原典型干旱年土壤水分及灌溉特征遥感分析[J].中国水土保持科学,2016,14(5):123-129.
[2] Nearing G S, Crow W T, Thorp K R, et al. Assimilating remote sensing observations of leaf area index and soil moisture for wheat yield estimates:An observing system simulation experiment[J]. Water Resources Research, 2012,48(5):213-223.
[3] 刘元波,吴桂平,柯长青,等.水文遥感[M].北京:科学出版社,2016.
[4] Fang X, Zhu Q, Ren L, et al. Large-scale detection of vegetation dynamics and their potential drivers using MODIS images and BFAST:A case study in Quebec, Canada[J]. Remote Sensing of Environment, 2018,206:391-402.
[5] Hensley S, Moller D, Oveisgharan S, et al. Ka-Band mapping and measurements of interferometric penetration of the greenland ice sheets by the GLISTIN Radar[J]. Ieee Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2016,9(6):1-15.
[6] Lievens H, Reichle R H, Liu Q, et al. Joint Sentinel-1 and SMAP data assimilation to improve soil moisture estimates[J]. Geophysical Research Letters, 2017,44(12):6145-6153.
[7] 李震,郭华东,施建成.综合主动和被动微波数据监测土壤水分变化[J].遥感学报,2002,6(6):481-484.
[8] 郭英,沈彦俊,赵超.主被动微波遥感在农区土壤水分监测中的应用初探[J].中国生态农业学报,2011,19(5):1162-1167.
[9] Salvi S, Stramondo S, Funning G J, et al. The Sentinel-1 mission for the improvement of the scientific understanding and the operational monitoring of the seismic cycle[J]. Remote Sensing of Environment, 2012,120(10):164-174.
[10] 曾玲方,李霖,万丽华.基于Sentinel-1卫星SAR数据的洪水淹没范围快速提取[J].地理信息世界,2015,22(5):100-103.
[11] 侯小刚.基于多源数据的阿勒泰地区积雪深度研究[D].乌鲁木齐:新疆师范大学,2013.
[12] Choudhury B J, Tucker C J. Monitoring global vegetation using Nimbus-737 GHz Data Some empirical relations[J]. International Journal of Remote Sensing, 1987,8(7):1085-1090.
[13] Attema E P W, Ulaby F T. Vegetation modeled as a water cloud[J]. Radio Science, 1978,13(2):357-364.
[14] 余凡,翟亮,张承明.主被动遥感系协同反演地表土壤水分方法[M].北京:测绘出版社,2016.
[15] 毛克彪,唐华俊,周清波,等.AMSR-E微波极化指数与MODIS植被指数关系研究[J].国土资源遥感,2007,19(1):27-31.
[16] Paloscia S, Pampaloni P. Microwave polarization index for monitoring vegetation growth[J]. Geoscience & Remote Sensing Ieee Transactions on, 1988,26(5):617-621.
[17] 林利斌,鲍艳松,左泉,等.基于Sentinel-1与FY-3C数据反演植被覆盖地表土壤水分[J].遥感技术与应用,2018,33(4):750-758.
[18] Zribi M, Dechambre M. A new empirical model to retrieve soil moisture and roughness from C-band radar data[J]. Remote Sensing of Environment, 2017,84(1):42-52.
[19] Karthikeyan L, Pan M, Wanders N, et al. Four decades of microwave satellite soil moisture observations:Part 1. A review of retrieval algorithms[J]. Advances in Water Resources, 2017,109:106-120.
[20] Colliander A, Jackson T J, Bindlish R, et al. Validation of SMAP surface soil moisture products with core validation sites[J]. Remote Sensing of Environment, 2017,191:215-231.
[21] 王春梅,余涛,孟庆岩,等.基于全极化雷达数据反演夏玉米覆盖农田表层土壤含水量[J].水资源与水工程学报,2014,25(2):29-34,41.
[22] 张庆君.高分三号卫星总体设计与关键技术[J].测绘学报,2017,46(3):269-277.

相似文献/References:

[1]史彦江,宋锋惠,罗青红,等.伊犁河流域油葵种植地产流产沙试验研究[J].水土保持研究,2011,18(02):40.
 SHI Yan-jiang,SONG Feng-hui,LUO Qing-hong,et al.Experimental Study on Generation of Runoff and Sediment on the Slope Grown Oil Sunflower in Ili River Basin[J].,2011,18(05):40.
[2]苏嫄,焦菊英,马祥华.黄土丘陵沟壑区主要群落地上生物量季节变化及其与土壤水分的关系[J].水土保持研究,2012,19(06):7.
 SU Yuan,JIAO Ju-ying,MA Xiang-hua.Seasonal Variation of Aboveground Biomass of Main Plant Communities and Its Relationship with Soil Moisture in the Hill-gully Loess Plateau[J].,2012,19(05):7.
[3]王巧利,贾燕锋,王宁,等.黄土丘陵沟壑区自然恢复坡面植物根系的分布特征[J].水土保持研究,2012,19(05):16.
 WANG Qiao-li,JIA Yan-feng,WANG Ning,et al.Distribution of Root on Vegetation Recovery Slope in the Hilly and Gully Loess Plateau[J].,2012,19(05):16.
[4]许浩,蒋齐,潘占兵,等.黄土丘陵区降雨、土壤水分和苗木成活率的关系[J].水土保持研究,2012,19(05):202.
 XU Hao,JIANG Qi,PAN Zhan-bing,et al.Relationship of Rainfall, Soil Moisture and Seedling Survival Rate in Loess Hilly Region[J].,2012,19(05):202.
[5]邝高明,朱清科,刘中奇,等.黄土丘陵沟壑区微地形对土壤水分及生物量的影响[J].水土保持研究,2012,19(03):74.
 KUANG Gao-ming,ZHU Qing-ke,LIU Zhong-qi,et al.Effect of Microrelief on the Soil Water and Vegetation Arrangement in Loess Hilly and Gully Region[J].,2012,19(05):74.
[6]鲁瑞洁,唐清亮,桑艳礼,等.青海湖克土沙区不同类型沙丘土壤水分的动态变化[J].水土保持研究,2012,19(02):111.
 LU Rui-jie,TANG Qing-liang,SANG Yan-li,et al.Dynamic Changes of Soil Moisture in Different Dunes of Ketu Sand Land in Qinghai Lake Basin[J].,2012,19(05):111.
[7]展秀丽,严平,王宁,等.青海湖防沙工程措施区土壤水分及入渗特征初步研究[J].水土保持研究,2012,19(01):33.
 ZHAN Xiu-li,YAN Ping,WANG Ning,et al.Preliminary Study on Soil Water and Permeability Characteristics of Desertification Combating Areas Exerted by Engineering Measures around Qinghai Lake[J].,2012,19(05):33.
[8]邵明安,陈志雄.SPAC中的水分运动[J].水土保持研究,1991,(01):3.
 Shao Mingan,Chen Zhixiong.WATER MOVEMENT IN SPAC[J].,1991,(05):3.
[9]刘向东,吴钦孝,赵鸿雁,等.黄土丘陵区油松人工林和山杨林林冠对降水的再分配及其对土壤水分的影响[J].水土保持研究,1991,(02):9.
 Liu Xiangdong,Wu Qinxiao,Zhao Hongyan,et al.REDISTRIBUTION OF PRECIPITATION BY CANOPIES OF ARTIFICIAL CHINESE PINES AND MOUNTAIN POPLARS AND ITS INFLUENCE ON SOIL MOISTURE IN LOESS HILLY REGION[J].,1991,(05):9.
[10]杨新民,杨文治,马玉玺.纸坊沟流域人工刺槐林生长状况与土壤水分条件研究[J].水土保持研究,1994,1(03):31.
 Yang Xinmin,Yang Wenzhi,Ma Yuxi.Study on the condition growing of the man-made Locust Woodland and moisture eco-environment in the small watershed of Zhifanggou[J].,1994,1(05):31.

备注/Memo

备注/Memo:
收稿日期:2018-12-24;改回日期:2019-01-19。
基金项目:国家自然科学基金(41771371);国家科研项目(2016YFD0300600)
作者简介:李伯祥(1994-),男,广西梧州人,硕士研究生,研究方向:多源遥感反演土壤水分。E-mail:1017939781@qq.com
通讯作者:陈晓勇(1961-),男,浙江诸暨人,教授,博士生导师,研究方向:地理信息科学理论研究和应用技术开发。E-mail:chenxy@ecit.cn
更新日期/Last Update: 1900-01-01