[1]瞿红云,贾国梅,向瀚宇,等.植被混凝土边坡修复基质易氧化有机碳组分季节动态[J].水土保持研究,2019,26(05):28-33.
 QU Hongyun,JIA Guomei,XIANG Hanyu,et al.Seasonal Dynamics of Soil Oxidizable Organic Carbon Fractions in Substrate of Eco-Restoration of Vegetation Concrete[J].,2019,26(05):28-33.
点击复制

植被混凝土边坡修复基质易氧化有机碳组分季节动态()
分享到:

《水土保持研究》[ISSN:1005-3409/CN:61-1272/P]

卷:
26卷
期数:
2019年05期
页码:
28-33
栏目:
出版日期:
2019-09-06

文章信息/Info

Title:
Seasonal Dynamics of Soil Oxidizable Organic Carbon Fractions in Substrate of Eco-Restoration of Vegetation Concrete
作者:
瞿红云1 贾国梅12 向瀚宇1 岳云飞1
1. 三峡大学 生物与制药学院, 湖北 宜昌 443002;
2. 三峡大学 三峡地区生态保护与治理国际联合研究中心, 湖北 宜昌 443002
Author(s):
QU Hongyun1 JIA Guomei12 XIANG Hanyu1 YUE Yunfei1
1. College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China;
2. Hubei International Center for Ecological Protection and Management in the Three Gorges Area, Yichang, Hubei 443002, China
关键词:
土壤易氧化有机碳组分季节变化驱动因素植被混凝土边坡修复
Keywords:
soiloxidizable organic carbon fractionseasonal dynamicsdriving factoreco-restoration of vegetation concrete
分类号:
S153.6+21
摘要:
易氧化有机碳组分能够敏感指示土壤质量的变化。为探讨植被混凝土边坡修复基质易氧化有机碳组分季节变化特征及其驱动因子,以2个修复年限的植被混凝土边坡修复基质为研究对象,测定4个季节的易氧化有机碳组分(F1:高氧化活性有机碳;F2:中氧化活性有机碳;F3:低氧化活性有机碳;F4:难氧化有机碳),揭示易氧化有机碳组分变化的的驱动因子。结果表明:易氧化有机碳组分及其占总有机碳的百分比具有明显季节动态。F1表现为夏季最低冬季最高;F2最高值出现在夏季而最低值出现在冬季;F3表现为春、秋、冬显著性高于夏季,F4表现为春、夏季显著低于秋、冬季。但是夏季的(F1+F2)/TOC最高,且春季高于秋、冬季,(F3+F4)/TOC变化规律则相反。这说明有机碳在春、夏季活性高,秋、冬季稳定性强。对于4个易氧化有机碳组分,土壤有机碳春、秋、冬季主要以F1为主,而F2在夏季含量最高,因此,F1可作为衡量基质质量状况的良好指标。冗余分析发现:气候因子是驱动易氧化有机碳及其组分变化的主要因素,同时边坡坡度以及基质的理化性质也是重要影响因素,这些因素主要驱动F1F2组分的季节动态。
Abstract:
Soil oxidizable organic carbon fractions can sensitively respond to variations in soil quality. In order to investigate the seasonal dynamics of soil oxidizable organic carbon fractions and their driving factors in substrate of eco-restoration of vegetation concrete, the concentration of oxidizable organic carbon fractions (F1, F2, F3 and F4) of eco-restoration of vegetation concrete were determined. The results showed that F1 was the lowest in the summer and highest in the winter, respectively, F2 was highest in the summer and lowest in the winter, respectively.F3 was lowest in the summer, F4 was significantly lower both in the spring and summer than those both in the autumn and winter; (F1+F2)/TOC was higher in the spring and the summer than that in the autumn and winter, and (F3+F4)/TOC was reversed, indicating that organic carbon was labile in spring and summer, respectively, and was stable in autumn and winter, respectively; F1 was the highest in spring, autumn and winter, respectively, and F2 was the highest in summer among four fractions, indicating that F1 can be used as a sensitive indicator for the changes in soil quality. Redundancy analysis showed that changes in climatic, physicochemical properties of sabstrate and slope gradient were the main factors that governed the seasonal dynamics of soil oxidizable organic carbon fractions, especially F1 and F2 fractions.

参考文献/References:

[1] Majumder B, Mandal B, Bandyopadhyay P K, et al. Soil organic carbon pools and productivity relationships for a 34 year old rice-wheat-jute agroecosystem under different fertilizer treatments[J]. Plant and Soil, 2007,297(1/2):53-67.
[2] Janzen H H. Soil organic matter characteristics after long-term cropping to various spring wheat rotations[J]. Canadian Journal of Soil Science, 1987,67(4):845-856.
[3] Chan K Y, Bowman A, Oates A. Oxidizible organic carbon fractions and soil quality changes in an Oxic Paleustalf under different pasture leys[J]. Soil Science, 2001,166(1):61-67.
[4] Pereira F B, Santos R C, Lombardi K C, et al. Soil oxidizable organic carbon fractions under organic management with industrial residue of roasted mate tea[J]. Functions of Natural Organic Matter in Changing Environment, 2014:295-299.
[5] Maia S M F, Xavier F A S, Oliveira T S, et al. Organic carbon pools in a Luvisol under agroforestry and conventional farming systems in the semi-arid region of Ceará, Brazil[J]. Agroforestry Systems, 2007,71(2):127-138.
[6] Guareschi R F, Pereira M G, Perin A. Oxidizable carbon fractions in Red Latosol under different management systems[J]. Revista Ciência Agron^omica, 2013,44(2):242-250.
[7] Sherrod L A, Peterson G A, Westfall D G, et al. Soil Organic carbon pools after 12 years in no-till dryland agroecosystems[J]. Soil Science Society of America Journal, 2005,69(5):1600-1608.
[8] 孙彩丽,刘国彬,马海龙,等.不同沙生植被土壤易氧化有机碳组分及其含量的差异[J].草地学报,2012,20(5):863-869.
[9] 贾国梅,何立,刘潇,等.三峡库区消落带土壤有机碳氧化稳定性特征[J].水土保持研究,2016,23(5):14-19.
[10] Majumder B, Mandal B, Bandyopadhyay P K. Soil organic carbon pools and productivity in relation to nutrient management in a 20-year-old rice-berseem agroecosystem[J]. Biology and Fertility of Soils, 2008,44(3):451-461.
[11] Barreto P A B, Gama-Rodrigues E F, Gama-Rodrigues A C, et al. Distribution of oxidizable organic C fractions in soils under cacao agroforestry systems in Southern Bahia, Brazil[J]. Agroforestry Systems, 2011,81(3):213-220.
[12] Sun C, Xue S, Chai Z, et al. Effects of land-use types on the vertical distribution of fractions of oxidizable organic carbon on the Loess Plateau, China[J]. Journal of Arid Land, 2016,8(2):221-231.
[13] Ding S, Xue S, Liu G. Effects of long-term fertilization on oxidizable organic carbon fractions on the Loess Plateau, China[J]. Journal of Arid Land, 2016,8(4):579-590.
[14] 许文年.植被混凝土生态防护技术理论与实践[M].北京:中国水利水电出版社,2012.
[15] 周明涛,刘高鹏,许文年.溪洛渡水电站高陡岩石边坡生态护坡试验研究[J].中国水土保持,2007(3):20-21.
[16] 吴彬,刘刚,肖海,等.雅砻江官地水电站生态护坡工程初期土壤肥力状况[J].水土保持通报,2014,34(2):172-176.
[17] 丁瑜,胡文静,夏振尧,等.生态护坡生境基材土壤肥力动态变化研究[J].水生态学杂志,2017,38(2):31-37.
[18] 许阳,陈芳清,金章利,等.水电站植被混凝土边坡生态防护工程基材土壤肥力隔年变化分析[J].水利水电技术,2012,43(11):47-50.
[19] 牛海波,许文年,夏振尧,等.植被混凝土肥力水平变化研究[J].中国水土保持,2010(2):36-39.
[20] 马志林,周心澄,王治国.我国边坡生态防护技术及其可持续性对策[J].福建林业科技,2008,35(2):184-187.
[21] Mosquera O, Buurman P, Ramirez B L, et al. Carbon replacement and stability changes in short-term silvo-pastoral experiments in Colombian Amazonia[J]. Geoderma, 2012,170:56-63.
[22] 周嘉聪,刘小飞,纪宇皝,等.减少降雨对杉木幼林土壤有机质组分及稳定性的影响[J].应用生态学报,2018,29(7):2203-2210.
[23] 刘爽,王传宽.5种温带森林土壤微生物生物量碳氮的时空格局[J].生态学报,2010,30(12):3135-3143.
[24] 辜翔,张仕吉,项文化,等.中亚热带4种森林类型土壤活性有机碳的季节动态特征[J].植物生态学报,2016,40(10):1064-1076.
[25] 魏孝荣,邵明安.黄土高原沟壑区小流域坡地土壤养分分布特征[J].生态学报,2007,27(2):603-612.
[26] 范志平,琼王,李法云.辽东山地不同森林类型土壤有机碳季节动态及其驱动因子[J].生态学杂志,2018,37(11):3220-3230.
[27] 郭婧,喻林华,方晰,等.中亚热带4种森林凋落物量、组成、动态及其周转期[J].生态学报,2015,35(14):4668-4677.
[28] 范跃新,杨玉盛,杨智杰,等.中亚热带常绿阔叶林不同演替阶段土壤活性有机碳含量及季节动态[J].生态学报,2015,35(14):4668-4677.
[29] Cleveland C C, Wieder W R, Reed S C, et al. Experimental drought in a tropical rain forest increases soil carbon dioxide losses to the atmosphere[J]. Ecology, 2010,91(8):2313-2323.
[30] 娄雪冬,翟生强,康冰,等.若尔盖泥炭地溶解有机碳季节变化特征及其影响因素[J]. 环境科学研究, 2014,27(2):157-163.
[31] 贾国梅,牛俊涛,席颖.三峡库区消落带湿地土壤有机碳及其组分特征[J].土壤,2015,47(5):926-931.
[32] 朱小叶,王娜,方晰,等.中亚热带不同退化林地土壤有机碳矿化的季节动态[J].生态学报,2019,39(1):1-14.
[33] 戴万宏,黄耀,武丽,等.中国地带性土壤有机质含量与酸碱度的关系[J].土壤学报,2009,46(5):851-860.

相似文献/References:

[1]李阳芳,宋维峰,和俊,等.元阳梯田核心区不同土地利用类型土壤水文效应研究[J].水土保持研究,2012,19(06):54.
 LI Yang-fang,SONG Wei-feng,HE Jun,et al.A Study on the Soil Hydrological Effect on Different Land Use Types of Terraced Core Area in Yuanyang[J].,2012,19(05):54.
[2]陈媛媛,周运超.灰质白云岩土壤有机碳的团聚体保护[J].水土保持研究,2012,19(06):82.
 CHEN Yuan-yuan,ZHOU Yun-chao.Protection of Soil Organic Carbon in the Calcite Dolomite Aggregate[J].,2012,19(05):82.
[3]祝遵凌,崔利杰,王飒.路基边坡土壤重金属污染特征及评价[J].水土保持研究,2012,19(06):127.
 ZHU Zun-ling,CUI Li-jie,WANG Sa.Characteristics and Assessment on Heavy Metal Pollution of Soils in Embankment Slope of Expressway[J].,2012,19(05):127.
[4]汪明霞,朱志锋,刘凡,等.江汉平原不同土地利用方式下农田土壤有机碳组成特点[J].水土保持研究,2012,19(06):24.
 WANG Ming-xia,ZHU Zhi-feng,LIU Fan,et al.Composition Characteristics of Soil Organic Carbon under Land Use Change in Jianghan Plain, Hubei Province[J].,2012,19(05):24.
[5]王国兴,徐福利,王渭玲,等.土壤中细菌产氨代谢对农田生态系统的意义[J].水土保持研究,2012,19(06):305.
 WANG Guo-xing,XU Fu-li,WANG Wei-ling,et al.Significance of Ammonia Production in Soil to the Ecosystem of Farmlands[J].,2012,19(05):305.
[6]陈晓杰,何政伟,薛东剑.基于模糊综合评价的土壤环境质量研究——以九龙县里伍铜矿区为例[J].水土保持研究,2012,19(01):130.
 CHEN Xiao-jie,HE Zheng-wei,XUE Dong-jian.Study on Soil Environmental Quality Based on Fuzzy Comprehensive Evaluation—A Case Study of Liwu Copper Area in Jiulong County[J].,2012,19(05):130.
[7]彭令发,郝明德,来璐.土壤有机氮组分及其矿化模型研究[J].水土保持研究,2003,10(01):46.
 PENG Ling-fa,HAO Ming-de,LAI Lu.Soil Organic Nitrogen Compounds and the Research of Its Mineralizable Models[J].,2003,10(05):46.
[8]李喜安,彭建兵,陈志新,等.湿陷性黄土地区土壤洞穴侵蚀研究[J].水土保持研究,2003,10(02):28.
 LI Xian,PENG Jianbing,CHEN Zhixin,et al.Study on Tunnel Erosion of Soil in Collapsing Loess Areas[J].,2003,10(05):28.
[9]林培喜,李德豪,周锡堂.微波消解法快速测定土壤中有机质的含量[J].水土保持研究,2003,10(02):135.
 LIN Peixi,LI Dehao,ZHOU Xitang.Detecting the Organic Content of Soil by Microwave Digestion[J].,2003,10(05):135.
[10]王银波,吴正宗.台湾有机农业的现况[J].水土保持研究,2003,10(04):148.
 WANG Yin-bo,WU Zheng-zong.Organic Farming in Taiwan[J].,2003,10(05):148.

备注/Memo

备注/Memo:
收稿日期:2019-02-24;改回日期:2019-03-21。
基金项目:国家自然科学基金应急管理项目“消落带土壤甲烷氧化菌群落的生态位分异特征及其对水位消涨的响应机理”(51541903)
作者简介:瞿红云(1992-),女(土家族),湖北利川人,硕士研究生,主要从事环境生态学研究。E-mail:2450009405@qq.com
通讯作者:贾国梅(1965-),女,甘肃永登人,博士,教授,主要从事土壤生态学研究。E-mail:jjjgm@126.com
更新日期/Last Update: 1900-01-01