[1]冯莉莉,贾志清,刘涛,等.高寒沙区几种典型固沙植物细根生物量及周转速率比较[J].水土保持研究,2018,25(02):120-125,130.
 FENG Lili,JIA Zhiqing,LIU Tao,et al.Comparative Study on Fine Roots Productivity and Turnover Rates of Several Typical Sand-Fixation Plants in Alpine Sandy Land[J].Research of Soil and Water Conservation,2018,25(02):120-125,130.
点击复制

高寒沙区几种典型固沙植物细根生物量及周转速率比较

参考文献/References:

[1] 吴伊波,车荣晓,马双,等.高寒草甸植被细根生产和周转的比较研究[J].生态学报,2014,34(13):3529-3537.
[2] 陈曦,张乃莉,周晓梅,等.细根分解研究进展及存在问题[J].吉林师范大学学报:自然科学版,2012(2):36-40.
[3] Aber J D, Melillo J M, Nadelhoffer K J, et al. Fine root turnover in forest ecosystems in relation to quantity and from of N availability:a comparison of two methods[J]. Oecologia, 1985,66(3):317-321.
[4] Shaver G R, Billings W D. Relationships among root branch order, carbon, and nitrogen in four temperate species[J]. Oecologia, 1975,111(3):302-308.
[5] Vogt K A, Grier C C, Vogt D J. Production, turnover and nutritional dynamics of aboveground and belowground detritus of world forest[J]. Advances in Ecological Research, 1986,15(15):303-377.
[6] Gill R A, Jackson R B. Global patterns of root turnover for terrestrial ecosystems[J]. New Phytologist, 2000,147(1):13-31.
[7] Majdi H, Pregitzer K, Morén A S, et al. Measuring fine root turnover in forest ecosystems[J]. Plant and Soil, 2005,276(1/2):1-8.
[8] Hendrick R L, Pregitzer K S. Patterns of fine root mortality in two sugar maple forests[J]. Nature, 1993,361(6407):59-61.
[9] Jackson R B, Mooney H A, Schulze E D. A global budget for fine root biomass, surface area, and nutrient contents[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997,94(14):7362-7366.
[10] Gaudinski J B, Trumbore S E, Davidson E A. The age of fine-root carbon in three forests of the eastern United States measured by radiocarbon[J]. Oecologia, 2001,129(3):420-429.
[11] Trumbore S E, Gaudinski J B. The secret lives of roots[J]. Science, 2003,302(5649):1344-1345.
[12] Tingey D T, Phillips D L, Johnson M G. Optimizing minirhizotron sample frequency for an evergreen and deciduous tree species[J]. New Phytologist, 2003,157(1):155-161.
[13] Ostonen I, Lõhmus K, Pajuste K. Fine root biomass, production and its proportion of NPP in a fertile middle-aged Norway spruce forest:comparison of soil core and ingrowth core methods[J]. Forest Ecology and Management, 2005,212(1):264-277.
[14] Xiao C W, Sang W G, Wang R Z. Fine root dynamics and turnover rate in an Asia white birch forest of Donglingshan Mountain, China[J]. Forest Ecology and Management, 2008,255(3):765-773.
[15] Böhm W. Maduakor H and Taylor H M. Comparison of five methods for characterizing soybean rooting density and development[J]. Agronomy Journal,1977,69(3):415-419.
[16] Samson B K, Sinclair T R. Soil core and minirhizotron comparison for the determination of root length density[J]. Plant and Soil, 1994,161(2):225-232.
[17] Vogt K A, Vogt D J, Bloomfield J. Analysis of some direct and indirect methods fox estimating root biomass and production of forests at an ecosystem level[J]. Plant and Soil, 1998,200:71-89.
[18] Friend A L, Eide M R, Hinckley T M. Nitrogen stress alters root proliferation in Douglas-fir seedlings[J]. Canadian Journal of Forest Research, 1990,20(9):1524-1529.
[19] Steele S J, Gower S T, Vogel J G, et al. Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada[J]. Tree Physiology, 1997,17(8/9):577-587.
[20] Van Rees K C J. Soil temperature effects from minirhizotron lighting systems[J]. Plant and Soil, 1998,200(1):113-118.
[21] Hendrick R L, Pregitzer K S. Applications of minirhizotrons to understand root function in forests and othernatural ecosystems[J]. Plant and Soil, 1996,185(2):293-304.
[22] Hendrick R L, Pregitzer K S. The dynamics of fine root, length, biomass, and nitrogen content in two northern hardwood ecosystems[J]. Can. J. for. Res, 1993,23(12):2507-2520.
[23] Rytter R M, Hansson A C. Seasonal amount, growth and depth distribution of fine roots in an irrigated and fertilized, Salix viminalis L. plantation[J]. Biomass and Bioenergy, 1996,11(2/3):129-137.
[24] Burke M K, Raynal D J. Fine root growth phenology, production, and turnover in a northern hardwood forest ecosystems[J]. Plant and Soil, 1994,162(1):135-146.
[25] 杨世琦,高旺盛,隋鹏,等.共和盆地土地沙漠化因素定量研究[J].生态学报,2005,25(12):3181-3187.
[26] 张东杰.共和盆地近50年来草地荒漠化驱动因素定量研究[J].水土保持研究,2010,17(4):166-169.
[27] 封建民,李晓华.近15年来共和盆地土地沙质荒漠化动态变化及原因分析[J].水土保持研究,2010,17(5):129-133.
[28] 魏占雄.高寒沙区生态恢复对植物物种多样性的影响[J].草业与畜牧,2009(7):36-51.
[29] 魏婷婷.共和盆地沙质荒漠化过程植被群落特征变化[J].生态环境学报,2011,20(12):1788-1793.
[30] 张永秀.青海共和盆地高寒流动沙丘快速治理技术[J].青海大学学报:自然科学版,2009,27(4):56-64.
[31] 韩晓玲.共和盆地沙化土地现状及治理途径初探[J].防护林科技,2010(1):106-108.
[32] Jia Z Q, Zhu Y J, Liu L Y. Different water use strategies of juvenile and adult Caragana intermedia plantations in the Gonghe Basin, Tibet Plateau[J]. Plos One, 2012,7(9):e45902.
[33] 刘丽颖,贾志清,朱雅娟,等.高寒沙地不同林龄中间锦鸡儿的水分利用策略[J].干旱区资源与环境,2012,26(5):119-125.
[34] 朱宏.正态格拉布斯统计量的近似分布[J].电子科技大学学报,1990,19(3):279-283.
[35] 张琳琳.长期大风对霸王根系分布的影响[D].乌鲁木齐:新疆师范大学,2014.
[36] 石坤,贾志清,张洪江,等.青海共和盆地典型固沙植物根系分布特征[J].中国水土保持科学,2016(6):78-85.

相似文献/References:

[1]吴春荣,邢彩萍.祁连山三种主要乔木林细根生物量比较[J].水土保持研究,2015,22(05):325.
 WU Chunrong,XING Caiping.Comparison of Fine Root Biomass of Three Main Arbors in Qilian Mountains[J].Research of Soil and Water Conservation,2015,22(02):325.

备注/Memo

收稿日期:2017-4-17;改回日期:2017-5-15。
基金项目:林业公益性行业科研专项“青海共和盆地典型固沙植物根系特征及功能研究”(201504420);国家自然科学基金(31670706,31600585)
作者简介:冯莉莉(1986-),女,吉林四平人,博士,研究方向为水土保持与荒漠化防治。E-mail:fenglili_caf@163.com
通讯作者:贾志清(1968-),女,北京人,博士,研究员,主要从事水土保持与荒漠化防治研究。E-mail:jiazq@caf.ac.cn

更新日期/Last Update: 1900-01-01