[1]陈媛媛,周运超.灰质白云岩土壤有机碳的团聚体保护[J].水土保持研究,2012,19(06):82-85,89.
 CHEN Yuan-yuan,ZHOU Yun-chao.Protection of Soil Organic Carbon in the Calcite Dolomite Aggregate[J].,2012,19(06):82-85,89.
点击复制

灰质白云岩土壤有机碳的团聚体保护()
分享到:

《水土保持研究》[ISSN:1005-3409/CN:61-1272/P]

卷:
19卷
期数:
2012年06期
页码:
82-85,89
栏目:
出版日期:
2099-01-01

文章信息/Info

Title:
Protection of Soil Organic Carbon in the Calcite Dolomite Aggregate
作者:
陈媛媛 周运超
贵州大学 林学院, 贵阳 550025
Author(s):
CHEN Yuan-yuan ZHOU Yun-chao
College of Forestry, Guizhou University, Guiyang 550025, China
关键词:
土壤土壤有机碳土壤活性碳土壤团聚体灰质白云岩乔木林
Keywords:
soilsoil organic carbonsoil oxidizable carbonsoil aggregatecalcite dolomitetree forest
分类号:
S153.6+2
摘要:
采集喀斯特地区灰质白云岩发育的乔木林下土壤,全部湿筛分为>5mm,5~2mm,2~1mm,1~0.5mm,0.5~0.25mm共5个粒级团聚体,再将5个粒级团聚体进行碳水化合物提取后后再次分别湿筛,收集>5mm,5~2mm,2~1mm,1~0.5mm,0.5~0.25mm共5个粒级的团聚体样品.对两次湿筛中5个粒级的土壤分别进行团聚体含量、土壤有机碳、土壤可氧化态有机碳测定,分析土壤团聚体稳定性与土壤有机碳、土壤可氧化态有机碳的关系.结果表明:灰质白云岩乔木林下土壤在经过提取碳水化合物的第二次湿筛后,大粒级团聚体(>5mm,5~2mm)向小粒级(2~1mm,1~0.5mm,0.5~0.25mm)转移;有机碳主要存在于较大粒级团聚体中,但各粒级团聚体有机碳并不随之转移;各粒径团聚体可氧化态碳含量均减少,但较大粒级(>5mm,5~2mm)可氧化态有机碳含量多,较小粒级(2~1mm,1~0.5mm,0.5~0.25mm)可氧化态有机碳含量少,故推测较大粒级团聚体(>2mm)保护土壤活性有机碳能力比较小粒级团聚体(<2mm)强.
Abstract:
In order to study organic carbon protected in aggregates of soil developed from calcite dolomite under forest in karst area, soil samples were collected and wet sieved into five aggregate fractions: >5mm, 5~2mm, 2~1mm, 1~0.5mm, 0.5~0.25mm. After extracted carbohydrate, each fraction aggregate was wet-sieved into 5 fractions again. The contents of soil aggregate, oxidisable soil organic carbon, and soil organic carbon were measured, and the relationship between soil aggregate stability with soil organic carbon and soil oxidisable organic carbon was analyzed. The results showed that aggregates broke down from the large size(>5mm, 5~2mm) to small (2~1mm, 1~0.5mm, 0.5~0.25mm) but soil organic carbon was contained mostly in larger aggregate after the second wet sieving, however, soil organic carbon did not transfer while aggregate was broken. Soil oxidisable organic carbon content decreased in all fractions after the final seiving, but most oxidisable organic carbon was contained in the larger particle (>5mm, 5~2mm), and less in smaller (2~1mm, 1~0.5mm, 0.5~0.25mm). According to the results, it was assumed that soil oxidisable organic carbon was protected by the larger aggregate (>2mm).

参考文献/References:

[1] Gifford R M, Cheney N P, Noble J C, et al. Australian land use, primary production of vegetation and carbon pools in relation to atmospheric carbon dioxide concentration[J]. Bureau Rural Resources and CSIRO Division of Plant Industry,1990,14(3):157-187.
[2] Gulde S, Chung H, Six J, et al. Soil carbon saturation controls labile and stable carbon pool dynamics[J]. Soil Science Society of America Journal,2007,72(3):605-612.
[3] 马红亮,朱建国,谢祖彬.大气CO2浓度升高对陆地生态系统土壤固碳的可能影响[J].土壤通报,2008,39(5):1184-1191.
[4] Huggins D R, Clapp C E, Allmaras R R. Carbon dynamics in corn-soybean sequences as estimated from natural 13C abundance[J]. Soil Science Society of America Journal,1998,62(1):195-203.
[5] Blair G J, Lefroy R D B, Lisle L. Soil carbon fractions based on their degree of oxidation,and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research,1995,46(7):1459-1466.
[6] 方华军,杨学明,张晓平.东北黑土有机碳储量及其对大气的贡献[J].水土保持学报,2003,17(3):9-12.
[7] 李恋卿,潘根兴.太湖地区几种水稻土的有机碳储存及其分布特性[J].科技通报,2000,16(6):421-426.
[8] Chung H, Grove J H, Six J. Indications for soil carbon saturation in a temperate agro ecosystem[J]. Soil Science Society of America Journal, 2008,72(4):1132-1139.
[9] Ashagrie Y, Zech W, Guggenberger G. Soil aggregation and total and particulate organic matter following conversion of native for ests to continuous cultivation in Ethiopia[J]. Soil&Tillage Research,2007,94(1):101-108.
[10] Adesodun J K, Adeyemi E F, Oyegoke C O. Distribution of nutrient elements within water stable aggregates of two tropical agro ecological soils under different land uses[J]. Soil&Tillage Research,2007,92(1):190-197.
[11] 吴建国,张小全,徐德应.六盘山林区几种土地利用方式下土壤活性有机碳的比较[J].植物生态学报,2004,28(5):657-664.
[12] 谭文峰,朱志锋,刘凡.江汉平原不同土地利用方式下土壤团聚体中有机碳的分布与积累特点[J].自然资源学报,2006,21(6):973-979.
[13] 杨长明,欧阳竹.华北平原农业土地利用方式对土壤水稳性团聚体分布特征及其有机碳含量的影响[J]. 土壤,2008,40(1):100-105.
[14] 郭菊花,陈小云,刘满强.不同施肥处理对红壤性水稻土团聚体的分布和有机碳、氮含量的影响[J].土壤, 2007,39(5):787-793.
[15] 徐江兵,李成亮,何园球.不同施肥处理对旱地红壤团聚体中有机碳含量及其组分的影响[J].土壤学报,2007,44(4):675-682.
[16] 蒋雪林.土壤碳水化合物总量的直接测定[J].土壤学进展,1994,22(2):40-44.
[17] 中国科学院南京土壤研究所土壤与环境分析中心.土壤理化分析与剖面[M].北京:中国标准出版社,1996.
[18] 蒋静,周运超,杜光平.石灰岩发育的乔木林下土壤团聚体形成的影响因素[J].中国水土保持,2011(7):47-50.
[19] 侯雪莹,韩晓增.土壤有机无机复合体的研究进展[J].农业系统科学与综合研究,2008,24(1):61-67.
[20] 徐建民,袁可能.我国地带性土壤中有机质氧化稳定性的研究[J].土壤通报,1995,26(1):1-13.

相似文献/References:

[1]沈艳,傅瓦利,蓝家程,等.岩溶山地不同土地利用方式土壤颗粒有机碳和矿物结合态有机碳的分布特征[J].水土保持研究,2012,19(06):1.
 SHEN Yan,FU Wa-li,LAN Jia-cheng,et al.Distribution Characteristics of Soil Particulate Organic Carbon and Mineral-associated Organic Carbon of Different Land Use in Karst Mountain[J].,2012,19(06):1.
[2]李阳芳,宋维峰,和俊,等.元阳梯田核心区不同土地利用类型土壤水文效应研究[J].水土保持研究,2012,19(06):54.
 LI Yang-fang,SONG Wei-feng,HE Jun,et al.A Study on the Soil Hydrological Effect on Different Land Use Types of Terraced Core Area in Yuanyang[J].,2012,19(06):54.
[3]祝遵凌,崔利杰,王飒.路基边坡土壤重金属污染特征及评价[J].水土保持研究,2012,19(06):127.
 ZHU Zun-ling,CUI Li-jie,WANG Sa.Characteristics and Assessment on Heavy Metal Pollution of Soils in Embankment Slope of Expressway[J].,2012,19(06):127.
[4]裴会敏,许明祥,李强,等.侵蚀条件下土壤有机碳流失研究进展[J].水土保持研究,2012,19(06):269.
 PEI Hui-min,XU Ming-xiang,LI Qiang,et al.Advances in Soil Organic Carbon Losses under Erosion[J].,2012,19(06):269.
[5]汪明霞,朱志锋,刘凡,等.江汉平原不同土地利用方式下农田土壤有机碳组成特点[J].水土保持研究,2012,19(06):24.
 WANG Ming-xia,ZHU Zhi-feng,LIU Fan,et al.Composition Characteristics of Soil Organic Carbon under Land Use Change in Jianghan Plain, Hubei Province[J].,2012,19(06):24.
[6]王国兴,徐福利,王渭玲,等.土壤中细菌产氨代谢对农田生态系统的意义[J].水土保持研究,2012,19(06):305.
 WANG Guo-xing,XU Fu-li,WANG Wei-ling,et al.Significance of Ammonia Production in Soil to the Ecosystem of Farmlands[J].,2012,19(06):305.
[7]李玉进,王百群.施用柳枝稷茎和叶对土壤有机碳与微生物量碳的影响及其分解特征[J].水土保持研究,2012,19(05):78.
 LI Yu-jin,WANG Bai-qun.Effect of Amendment of Leaf and Stem of Switchgrass(Panicum virgatum) on Soil Organic Carbon and Microbial Biomass Carbon as well as the Decomposition Characteristic of the Leaf and Stem[J].,2012,19(06):78.
[8]赵发珠,韩新辉,杨改河,等.黄土丘陵区不同退耕还林地土壤有机碳、氮密度变化特征[J].水土保持研究,2012,19(04):43.
 ZHAO Fa-zhu,HAN Xin-hui,YANG Gai-he,et al.Change Characteristics of Density of Soil Organic Carbon and Nitrogen under Land Shifted into Forestland in Hilly Loess Region[J].,2012,19(06):43.
[9]杨洋,王百群,李玉进.苜蓿对旱地土壤有机碳氮变化的驱动作用[J].水土保持研究,2012,19(03):78.
 YANG Yang,WANG Bai-qun,LI Yu-jin.Driving Effect of Alfalfa (Medicago sativa L.) on Dynamics of Soil Organic Carbon and Nitrogen in Dryland[J].,2012,19(06):78.
[10]陈晓杰,何政伟,薛东剑.基于模糊综合评价的土壤环境质量研究——以九龙县里伍铜矿区为例[J].水土保持研究,2012,19(01):130.
 CHEN Xiao-jie,HE Zheng-wei,XUE Dong-jian.Study on Soil Environmental Quality Based on Fuzzy Comprehensive Evaluation—A Case Study of Liwu Copper Area in Jiulong County[J].,2012,19(06):130.

备注/Memo

备注/Memo:
收稿日期:2012-5-16;改回日期:2012-6-17。
基金项目:中国科学院战略性先导科技专项(XDA05070405)
作者简介:陈媛媛(1987- ),女,湖北随州人,硕士研究生,从事森林土壤学研究.E-mail:yychen318@foxmail.com
通讯作者:周运超(1964- ),男,贵州兴仁县人,博士生导师,主要研究方向为森林土壤学.E-mail:yc409@163.com
更新日期/Last Update: 1900-01-01