[1] Huang L, Shao M A. Advances and perspectives on soil water research in China's Loess Plateau[J]. Earth-Science Reviews, 2019,199:102962.
[2] Goessling H F, Reick C H. What do moisture recycling estimates tell us?Exploring the extreme case of non-evaporating continents[J]. Hydrology and Earth System Sciences, 2011,15(10):3217-3235.
[3] Zhou S, Williams A P, Lintner B R, et al. Soil moisture-atmosphere feedbacks mitigate declining water availability in drylands[J]. Nature Climate Change, 2021,11(1):38-44.
[4] Engelbrecht B M, Comita L S, Condit R, et al. Drought sensitivity shapes species distribution patterns in tropical forests[J]. Nature, 2007,447:80-82.
[5] Jia Y H, Shao M A. Dynamics of deep soil moisture in response to vegetational restoration on the Loess Plateau of China[J]. Journal of Hydrology, 2014,519:523-531.
[6] Zhao S, Zhao Y, Wu J. Quantitative analysis of soil pores under natural vegetation successions on the Loess Plateau[J]. Science China Earth Sciences, 2010,53(4):617-625.
[7] Sterling S M, Ducharne A, Polcher J. The impact of global land-cover change on the terrestrial water cycle[J]. Nature Climate Change, 2013,3(4):385-390.
[8] Pokhrel Y, Felfelani F, Satoh Y, et al. Global terrestrial water storage and drought severity under climate change[J]. Nature Climate Change, 2021,11(3):226-233.
[9] Berg A, Findell K, Lintner B, et al. Land-atmosphere feedbacks amplify aridity increase over land under global warming[J]. Nature Climate Change, 2016,6(9):869-874.
[10] Zhang M, Wei X. Deforestation, forestation, and water supply[J]. Science, 2021,371:990-991.
[11] Ali G, Wang Z, Li X, et al. Deep soil water deficit and recovery in alfalfa fields of the Loess Plateau of China[J]. Field Crops Research, 2021,260:107990.
[12] Huang Z, Liu Y, Qiu K, et al. Soil-water deficit in deep soil layers results from the planted forest in a semi-arid sandy land:Implications for sustainable agroforestry water management[J]. Agricultural Water Management, 2021,254:106985.
[13] Wang Y, Shao M A, Liu Z. Vertical distribution and influencing factors of soil water content within 21-m profile on the Chinese Loess Plateau[J]. Geoderma, 2013,193:300-310.
[14] Li B B, Li P P, Zhang W T, et al. Deep soil moisture limits the sustainable vegetation restoration in arid and semi-arid Loess Plateau[J]. Geoderma, 2021,399:115122.
[15] 邵明安,贾小旭,王云强,等.黄土高原土壤干层研究进展与展望[J].地球科学进展,2016,31(1):14-22.
[16] Qiao J, Zhu Y, Jia X, et al. Factors that influence the vertical distribution of soil water content in the critical zone on the loess plateau, China[J]. Vadose Zone Journal, 2018,17(1):1-7.
[17] Lu Y, Si B, Li H, et al. Elucidating controls of the variability of deep soil bulk density[J]. Geoderma, 2019,348:146-157.
[18] Biswas A, Si B C. Identifying scale specific controls of soil water storage in a hummocky landscape using wavelet coherency[J]. Geoderma, 2011,165(1):50-59.
[19] Tang C, Piechota T C. Spatial and temporal soil moisture and drought variability in the Upper Colorado River Basin[J]. Journal of Hydrology, 2009,379(1):122-135.
[20] Yang W, Jin F, Si Y, et al. Runoff change controlled by combined effects of multiple environmental factors in a headwater catchment with cold and arid climate in northwest China[J]. Science of the Total Environment, 2021,756:143995.
[21] 姬王佳,黄亚楠,李冰冰,等.陕北黄土区深剖面不同土地利用方式下土壤水氢氧稳定同位素特征[J].应用生态学报,2019,30(12):4143-4149.
[22] Wang Y, Shao M A, Liu Z, et al. Prediction of bulk density of soils in the Loess Plateau region of China[J]. Surveys in Geophysics, 2014,35(2):395-413.
[23] Gao Z, Niu F, Lin Z, et al. Fractal and multifractal analysis of soil particle-size distribution and correlation with soil hydrological properties in active layer of Qinghai-Tibet Plateau, China[J]. Catena, 2021,203:105373.
[24] Jordanova D, Jordanova N. Updating the significance and paleoclimate implications of magnetic susceptibility of Holocene loessic soils[J]. Geoderma, 2021,391:114982.
[25] Qiu Y, Fan Y, Chen Y, et al. Response of dry matter and water use efficiency of alfalfa to water and salinity stress in arid and semiarid regions of Northwest China[J]. Agricultural Water Management, 2021,254:106934.
[26] 魏孝荣,邵明安.黄土沟壑区小流域土壤pH值的空间分布及条件模拟[J].农业工程学报,2009,25(5):61-67.
[27] Jia X, Shao M A, Wei X, et al. Hillslope scale temporal stability of soil water storage in diverse soil layers[J]. Journal of Hydrology, 2013,498:254-264.
[28] Huang Y, Chang Q, Li Z. Land use change impacts on the amount and quality of recharge water in the loess tablelands of China[J]. Science of the Total Environment, 2018,628:443-452.
[29] 杜康,张北赢.黄土丘陵区不同土地利用方式土壤水分变化特征[J].水土保持研究,2020,27(6):72-76.
[30] Huang Y, Evaristo J, Li Z. Multiple tracers reveal different groundwater recharge mechanisms in deep loess deposits[J]. Geoderma, 2019,353:204-212.
[31] Shi P, Huang Y, Ji W, et al. Impacts of deep-rooted fruit trees on recharge of deep soil water using stable and radioactive isotopes[J]. Agricultural and Forest Meteorology, 2021,300:108325.
[32] Gao X, Meng T, Zhao X. Variations of soil organic carbon following land use change on deep-loess hillsopes in China[J]. Land Degradation & Development, 2017,28(7):1902-1912.
[33] 成向荣,黄明斌,邵明安.神木水蚀风蚀交错带主要人工植物细根垂直分布研究[J].西北植物学报,2007,27(2):321-327.
[34] 兰志龙,潘小莲,赵英,等.黄土丘陵区不同土地利用模式对深层土壤含水量的影响[J].应用生态学报,2017,28(3):847-855.
[35] Wang Y, Hu W, Zhu Y, et al. Vertical distribution and temporal stability of soil water in 21-m profiles under different land uses on the Loess Plateau in China[J]. Journal of Hydrology, 2015,527:543-554.
[36] Li H, Si B, Ma X, et al. Deep soil water extraction by apple sequesters organic carbon via root biomass rather than altering soil organic carbon content[J]. Science of the Total Environment, 2019,670:662-671.
[37] Ji W, Huang Y, Shi P, et al. Recharge mechanism of deep soil water and the response to land use change in the loess deposits[J]. Journal of Hydrology, 2021,592:125817.
[38] 冯挺,黄法融,郝建盛,等.巩乃斯河谷地带地表土壤水分和电导率的分布特征[J].干旱区研究,2020,37(6):1457-1468.
[39] Turkeltaub T, Wang J, Cheng Q, et al. Soil moisture and electrical conductivity relationships under typical Loess Plateau land covers[J]. Vadose Zone Journal, 2022,21(1):e20174.
[40] Wang Y, Shao M A, Zhu Y, et al. Impacts of land use and plant characteristics on dried soil layers in different climatic regions on the Loess Plateau of China[J]. Agricultural and Forest Meteorology, 2011,151(4):437-448.
[1]吕锡芝,范敏锐,余新晓,等.北京百花山核桃楸华北落叶松混交林空间结构特征[J].水土保持研究,2010,17(03):212.
LV Xi-zhi,FAN Min-rui,YU Xin-xiao,et al.Spatial Structure of Juglans Mandshurica and Larix Principis-rupprechtⅡ Mixed Forest in Beijing BaihuaMountain.[J].Research of Soil and Water Conservation,2010,17(03):212.
[2]肖文娅,周琦,董务闯,等.苏州太湖流域2种水源涵养林空间结构特征与枯落物持水特性研究[J].水土保持研究,2014,21(04):21.
XIAO Wen-ya,ZHOU Qi,DONG Wu-chuang,et al.Spatial Structure Characteristics and Litter Water Holding Characteristics of Two Water Conservation Forests in Taihu Lake Watershed of Suzhou[J].Research of Soil and Water Conservation,2014,21(03):21.
[3]周娟,陈丽华,郭文体,等.大辽河流域天然杨桦林空间结构分析[J].水土保持研究,2013,20(06):77.
ZHOU Juan,CHEN Li-hua,GUO Wen-ti,et al.Spatial Structural Characteristics of Natural Populus davidiana-Betula Platyphylla Forest in the Great Liaohe River Basin[J].Research of Soil and Water Conservation,2013,20(03):77.
收稿日期:2022-01-02 修回日期:2022-03-24
资助项目:青海省自然科学基金“三江源区荒漠植林恢复过程中林木根系互作机制”(2020-ZJ-945Q); 青海省重点研发与转化计划—青海共和盆地基于林分稳定和功能保障的沙化土地防护林评价和示范(2022-NK-168); 2020年林业和草原科技推广示范项目“三江源区沙化土地人工植被结构改善与功能提升技术和示范”(青〔2020〕TG14)
第一作者:徐莹(1996—),女,新疆博乐人,硕士,研究方向:高寒地区森林生态恢复机理研究。E-mail:1520372831@qq.com
通信作者:邓磊(1984—),男,陕西杨凌人,博士,副研究员,主要从事高寒地区森林生态恢复机理研究。E-mail:pebbledeng@sina.com