[1] Iii F S C, Mcfarland J, Mcguire A D, et al. The changing global carbon cycle: linking plant-soil carbon dynamics to global consequences[J]. Journal of Ecology, 2009,97(5):840-850.
[2] Yuan Y, Zhao W, Zhang Z, et al. Impacts of oxalic acid and glucose additions on N transformation in microcosms via artificial roots[J]. Soil Biology and Biochemistry, 2018, 121(38):16-23.
[3] 宁心哲.大青山油松虎榛子根系分泌物及根际土壤酶活性研究[D].呼和浩特:内蒙古农业大学,2008.
[4] Grayston S J, Vaughan D, Jones D A. Rhizosphere carbon flow in trees[J]. Applied Soil Ecology, 1997,5(1):29-56.
[5] Fransson P, Johansson E M. Elevated CO2 and nitrogen influence exudation of soluble organic compounds by ectomycorrhizal root systems[J]. Fems Microbiology Ecology, 2010,71(2):186-196.
[6] Phillips R P, Bernhardt E S, Schlesinger W H. Elevated CO2 increases root exudation from loblolly pine(Pinus taeda)seedlings as an N-mediated response.[J]. Tree Physiology, 2009, 29(12):1513-1523.
[7] 吴林坤,林向民,林文雄.根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J].植物生态学报,2014,38(3):298-310.
[8] Cheng Weixin, Parton W J, Gonzalez-Meler M A, et al. Synthesis and modeling perspectives of rhizosphere priming[J]. New Phytologist, 2014,201(1):31-44.
[9] Yin H, Wheeler E, Phillips R P. Root-induced changes in nutrient cycling in forests depend on exudation rates[J]. Soil Biology & Biochemistry, 2014,78(78):213-221.
[10] 温仲明,焦峰,刘宝元,等.黄土高原森林草原区退耕地植被自然恢复与土壤养分变化[J].应用生态学报,2005,16(11):2025-2029.
[11] 李裕元,邵明安.黄土高原子午岭森林群落演替与结构特征演化[J].西北植物学报,2003,23(5):7-13.
[12] Donovan, P, German, et al. The Michaelis-Menten kinetics of soil extracellular enzymes in response to temperature:a cross-latitudinal study[J]. Global Change Biology, 2012,18(4):1468-1479.
[13] Donovan, P, German, et al. The Michaelis-Menten kinetics of soil extracellular enzymes in response to temperature: a cross-latitudinal study[J]. Global Change Biology, 2012,18(4):1468-1479.
[14] 杨万勤,王开运.土壤酶研究动态与展望[J].应用与环境生物学报,2002,8(5):564-570.
[15] Sinsabaugh R L, Carreiro M M, Repert D A. Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss[J]. Biogeochemistry, 2002,60(1):1-24.
[16] Burns R G, Deforest J L, Marxsen J, et al. Soil enzymes in a changing environment: Current knowledge and future directions[J]. Soil Biology & Biochemistry, 2013,58(2):216-234.
[17] 孙悦,徐兴良,Kuzyakov Yakov.根际激发效应的发生机制及其生态重要性[J].植物生态学报,2014,38(1):62-75.
[18] Peng X, Wang W. Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China[J]. Soil Biology and Biochemistry, 2016,98:74-84.
[19] Sinsabaugh, Robert, L, et al. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment[J]. Nature, 2009,462(7320):795-798.
[20] Li Q, Liu Y, Gu Y, et al. Ecoenzymatic stoichiometry and microbial nutrient limitations in rhizosphere soil along the Hailuogou Glacier forefield chronosequence[J]. Science of The Total Environment, 2019,704(48).DOI:10.1016/j.scitotenv.2019.135413.
[21] Ren C, Zhao F, Kang D, et al. Linkages of C:N:P stoichiometry and bacterial community in soil following afforestation of former farmland[J]. Forest Ecology & Management, 2016, 376(15):59-66.
[22] Güsewell S, Gessner M O. N:P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms[J]. Functional Ecology, 2009,23(1):211-219.
[23] Zhang W, Xu Y, Gao D, et al. Ecoenzymatic stoichiometry and nutrient dynamics along a revegetation chronosequence in the soils of abandoned land and Robinia pseudoacacia plantation on the Loess Plateau, China[J]. Soil Biology and Biochemistry, 2019,134(38):1-14.
[24] Xu Z, Yu G, Zhang X, et al. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China(NSTEC)[J]. Soil Biology & Biochemistry, 2017,104(1):152-163.
[25] 张鹏,王国梁.黄土高原刺槐林土壤酶化学计量沿着环境梯度变化[J].水土保持研究,2020,27(1):161-167.
[1]宁虎森,罗青红,吉小敏,等.新疆甘家湖梭梭林碳、氮、磷、钾生态化学计量特征[J].水土保持研究,2017,24(06):68.
NING Husen,LUO Qinghong,JI Xiaomin,et al.Stoichiometry Characteristic on Carbon, Nitrogen, Phosphorus and Potassium of Ganjiahu Haloxylon ammodendron Stand in Xinjiang[J].Research of Soil and Water Conservation,2017,24(02):68.
[2]贾国梅,何立,程虎,等.三峡库区不同植被土壤微生物量碳氮磷生态化学计量特征[J].水土保持研究,2016,23(04):23.
JIA Guomei,HE Li,CHENG Hu,et al.Ecological Stoichiometry Characteristics of Soil Microbial Biomass Carbon, Nitrogen and Phosphorus Under Different Vegetation Covers in Three Gorges Reservoir Area[J].Research of Soil and Water Conservation,2016,23(02):23.
[3]谭海霞,金照光,孙富强,等.滦河口湿地植物-土壤生态化学计量相关性研究[J].水土保持研究,2019,26(02):68.
TAN Haixia,JIN Zhaoguang,SUN Fuqiang,et al.Correlation Between the Stoichiometric Characteristics of Plants and Soils in Luanhe Estuary Wetland[J].Research of Soil and Water Conservation,2019,26(02):68.
[4]乔雨宁,董从国,黄 敏,等.黄土高原不同植被带刺槐生态化学计量特征[J].水土保持研究,2020,27(04):31.
QIAO Yuning,DONG Congguo,HUANG Min,et al.Ecological Stoichiometric Characteristics of Robinia pseudoacacia in Different Vegetation Zones on the Loess Plateau[J].Research of Soil and Water Conservation,2020,27(02):31.
[5]吴晓妮,付登高,彭珮媛,等.基于生态化学计量方法识别农业面源污染防控重点区域[J].水土保持研究,2020,27(05):160.
WU Xiaoni,FU Denggao,PENG Peiyuan,et al.Identifying Key Areas of Agricultural Non-Point Source Pollution Control Based on Ecological Stoichiometry[J].Research of Soil and Water Conservation,2020,27(02):160.
[6]宋昕妮,许仲林,李 路,等.雪岭云杉林土壤-叶片碳、氮化学计量特征对NDVI及环境因子的响应[J].水土保持研究,2020,27(02):69.
SONG Xinni,XU Zhonglin,LI Lu,et al.Responses of Stoichiometric Characteristics of Soil and Leaf Carbon and Nitrogen in Picea schrenkiana Forests to NDVI and Environmental Factors[J].Research of Soil and Water Conservation,2020,27(02):69.
收稿日期:2021-01-30 修回日期:2021-03-04
资助项目:国家自然科学基金(42077456); 国家重点研发计划课题(2017YFC0504601)
第一作者:王润超(1994—),男,河北保定人,硕士研究生,研究方向为流域生态管理。E-mail:wang1113719724@163.com
通信作者:王国梁(1971—),男,陕西西安人,研究员,博士生导师,主要从事流域生态管理研究。E-mail:glwang@nwsuaf.edu.cn