[1] Gerten D, Schaphoff S, Lucht W. Potential future changes in water limitations of the terrestrial biosphere[J]. Climatic Change, 2007,80(3):277-299.[2] Ma K M, Fu B J, Liu S L, et al. Multiple-scale soil moisture distribution and its implications for ecosystem restoration in an arid River valley, China [J]. Land Degradation and Development, 2004,15(1):75-85.[3] Helling C S, Gish T J. Physical and chemical processes affecting preferential flow [J]. American Society of Agricultural Engineering, 1991(77):50-63.[4] 吕文星,张洪江,吴煜禾,等.基于点格局分析的林地表层土壤优先路径水平分布特征[J].水土保持学报,2012,26(6):68-74.[5] 张财宝.三峡库区森林土壤优先流染色特征研究[D].武汉:华中师范大学,2013.[6] 吕刚,金兆梁,凌帅,等.浑河源头水源涵养林土壤优先流特征[J].水土保持学报,2019,33(4):287-292.[7] 魏虎伟,程金花,杜士才,等.利用染色示踪法研究四面山两种林地优先路径分布特征[J].水土保持通报,2015,35(2):193-197,204.[8] 程金花,张洪江,史玉虎.三峡库区花岗岩林地土壤特性与“优先路径”的关系[J].中国水土保持科学,2005,3(1):97-101.[9] 张东旭,程金花,王伟,等.基于O-ring统计的公路边坡土壤优先流路径分布分析[J].农业工程学报,2017,33(4):161-168.[10] Glass R J, Nicholl M J. Physics of gravity fingering of immiscible fluids within porous media:An overview of current understanding and selected complicating factors[J]. Geoderma, 1996,70(2):133-163.[11] Karup D, Moldrup P, Paradelo M, et al. Water and solute transport in agricultural soils predicted by volumetric clay and silt contents [J]. Journal of Contaminant Hydrology, 2016,192:194-202.[12] Shaw J N, West L T, Radcliffe D E, et al. Preferential flow and pedotransfer functions for transport properties in sandy kandiudults[J]. Soil Science Society of America Journal, 2000,64(2):670-678.[13] 吕文星,张洪江,吴煜禾,等.基于点格局分析的林地表层土壤优先路径水平分布特征[J].水土保持学报,2012,26(6):68-74.[14] Reading L P, Baumgartl T, Bristow K L, et al. Hydraulic conductivity increases in a sodic clay soil in response to gypsum applications:Impacts of bulk density and cation exchange [J]. Soil Science, 2012,177:165-171.[15] Sanders E C, Abou Najm M R, Mohtar R H, et al. Field method for separating the contribution of surface-connected preferential flow pathways from flow through the soil matrix[J]. Water Resources Research, 2012,48(4):1427-1434.[16] Zhang Y H, Niu J Z, Zhang M X, et al. Interaction between plant roots and soil water flow in response to preferential flow paths in Northern China [J]. Land Degradation and Development, 2017,28(2):648-663.[17] 张英虎,牛健植,朱蔚利,等.森林生态系统林木根系对优先流的影响[J].生态学报,2015,35(6):1788-1797.[18] 常丹东.三峡地区阔叶林地植物根系分布特征与优先路径关系分析[J].水土保持研究,2014,21(6):41-46.[19] 张建丰,林性粹,王文焰.黄土的大孔隙特征和大孔隙流研究[J].水土保持学报,2003,17(4):168-171.[20] 段爱国,张建国,张俊佩,等.干热河谷主要植被恢复树种水分利用效率动态分析[J].北京林业大学学报,2010,32(6):13-19.[21] 钟祥浩.干热河谷区生态系统退化及恢复与重建途径[J].长江流域资源与环境,2000,9(3):376-383.[22] 何周窈,苏正安,王勇,等.干热河谷冲沟发育区土壤细沟可蚀性及主要影响因素[J].水土保持学报,2020,34(3):8-13,27.[23] 邵一敏,赵洋毅,段旭,等.基于分形分析的干热河谷区典型地类土壤优先路径分布特征[J].西北农林科技大学学报:自然科学版,2020,48(7):1-11.[24] 吴庆华,张家发,蔺文静,等.土壤水流模式染色剂示踪及优先流程度评估[J].农业工程学报,2014,30(7):82-90.[25] Miller F T, Guthrie R L. Classification and distribution of soils containing rock fragments in the United States[J]. Erosion and productivity of soils containing rock fragments, 1984, 13: 1-6.[26] 张东旭,程金花,王伟,等.鹤大高速(G11)低路基边坡土壤优先流特征[J].水土保持学报,2016,30(5):76-81.[27] 田香姣,程金花,杜士才,等.2种土地利用方式下的优先流特征[J].水土保持学报,2014,28(3):37-41.[28] Forrer I, Papritz A, Kasteel R, et al. Quantifying dye tracers in soil profiles by image processing [J]. European Journal of Soil Science, 2000,51(2):313-322.[29] Zhongjie S, Lihong X, Yanhui W, et al. Effect of rock fragments on macropores and water effluent in a forest soil in the stony mountains of the Loess Plateau, China [J]. African Journal of Biotechnology, 2012,11(39):9350-9361.[30] Zhou Beibei, Shao mingan, Shao Hongbo. Effects of rock fragments on water movement and solute transport in a Loess Plateau soil [J]. Comptes Rendus Geoscience, 2009,341(6):462-472.[31] Govers G, Oost K V, Poesen J. Responses of a semi-arid landscape to human disturbance:A simulation study of the interaction between rock fragment cover, soil erosion and land use change[J]. Geoderma, 2006,133(1):19-31.[32] Poesen J, Lavee H. Rock fragments in top soils:significance and processes [J]. Catena, 1994,23(1/2):1-28.[33] 骆紫藤,牛健植,孟晨,等.华北土石山区森林土壤中石砾分布特征对土壤大孔隙及导水性质的影响[J].水土保持学报,2016,30(3):305-308.[34] 时忠杰,王彦辉,徐丽宏,等.六盘山森林土壤的石砾对土壤大孔隙特征及出流速率的影响[J].生态学报,2008,28(10):4929-4939.[35] Schenk H J. The shallowest possible water extraction profile:A null model for global root distributions[J]. Vadose Zone Journal, 2008,7(3):1119-1124.[36] Bogner C, Widemann B T Y, Lange H. Characterising flow patterns in soils by feature extraction and multiple consensus clustering[J]. Ecological Informatics, 2013,15:44-52.[37] 孙龙,张洪江,程金花,等.柑橘林地优先路径分布及其影响因素[J].东北林业大学学报,2013,41(2):65-69.[38] 邵一敏,赵洋毅,段旭,等.金沙江干热河谷典型林草地植物根系对土壤优先流的影响[J].应用生态学报,2020,31(3):725-734.[39] 王小芳.红壤丘陵区林地植物根系对土壤优先流的影响研究[D].长沙:湖南师范大学,2018.
[1]王宪帅,黄从德,王勇军.岷江上游山地森林-干旱河谷交错带不同土地 利用类型土壤有机碳储量[J].水土保持研究,2010,17(04):148.
WANG Xian-shuai,HUANG Cong-de,WANG Yong-jun.Soil Organic Carbon Storage under Different Land Use Types at Mountain Forest-Drought Valley Ecotone in the Upper Reaches of Minjiang River[J].Research of Soil and Water Conservation,2010,17(01):148.
[2]朱兆棋,刘守江,刘鲁光,等.安宁河干旱河谷区不同类型农用地土壤抗冲性及与土壤性质关系[J].水土保持研究,2024,31(01):27.[doi:10.13869/j.cnki.rswc.2024.01.046]
Zhu Zhaoqi,Liu Shoujiang,Liu Luguang,et al.Soil Anti-scourability of Different Types of Agricultural Lands in the Arid Valley Area of the Anning River and Its Relationship with Soil Properties[J].Research of Soil and Water Conservation,2024,31(01):27.[doi:10.13869/j.cnki.rswc.2024.01.046]
收稿日期:2020-09-06 修回日期:2020-11-02资助项目:国家自然科学基金项目(42067005,31860235); 云南省重点研发计划项目(2018BB018); 云南省万人计划青年拔尖人才专项(YNWR-QNBJ-2019-215,YNWR-QNBJ-2019-226); 国家林草局林业科技创新平台运行项目(2020132078); 云南玉溪森林生态系统国家长期科研基地(2020132550); 云南省自然生态监测网络项目(2020-YN-13)第一作者:万艳萍(1995—),女,云南丽江人,在读硕士,主要从事水土保持研究。E-mail:1546030827@qq.com通信作者:赵洋毅(1980—),男,吉林农安人,博士,教授,主要从事水土保持和小流域综合治理研究。E-mail: yyz301@foxmail.com