[1]金章利,刘高鹏,周明涛,等.喀斯特山地草地土壤酶活性及土壤微生物碳代谢活性研究[J].水土保持研究,2020,27(03):37-44.
 JIN Zhangli,LIU Gaopeng,ZHOU Mingtao,et al.Soil Enzyme Activity and Microbial Carbon Metabolism Along an Altitudinal Gradient in Grasslands of Karst Mountain[J].Research of Soil and Water Conservation,2020,27(03):37-44.
点击复制

喀斯特山地草地土壤酶活性及土壤微生物碳代谢活性研究

参考文献/References:

[1] Geyer K M, Kyker-Snowman E, Grandy A S, et al. Microbial carbon use efficiency:accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter[J]. Biogeochemistry, 2016,127(2/3):173-188.
[2] Lange M, Eisenhauer N, Sierra C A, et al. Plant diversity increases soil microbial activity and soil carbon storage[J]. Nature Communications, 2015,6:6707. DOI:10.1038/ncomms7707.
[3] Keiluweit M, Bougoure J J, Nico P S, et al. Mineral protection of soil carbon counteracted by root exudates[J]. Nature Climate Change, 2015,5(6):588-592.
[4] Spohn M, Klaus K, Wanek W, et al. Microbial carbon use efficiency and biomass turnover times depending on soil depth-Implications for carbon cycling[J]. Soil Biology and Biochemistry, 2016,96:74-81.
[5] Liang C, Schimel J P, Jastrow J D. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology, 2017,2(8):17105. DOI:10.1038/nmicrobiol.2017.105
[6] Spohn M, Pötsch E M, Eichorst S A, et al. Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland[J]. Soil Biology and Biochemistry, 2016,97:168-175.
[7] Mooshammer M, Wanek W, Hämmerle I, et al. Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling[J]. Nature Communications, 2014,5:3694. DIO:10.1038/ncomms4694.
[8] Doran J W, Elliott ET, Paustian K. Soil microbial activity, nitrogen cycling, and long-term changes in organic carbon pools as related to fallow tillage management[J]. Soil & Till. Res., 1998,49(1/2):3-18.
[9] Dorthe Groth Petersen, Steven J. Blazewicz, Mary Firestone,et al. Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska[J]. Environmental Microbiology, 2012,14(4):993-1008.
[10] Tang J, Riley W J. Weaker soil carbon-climate feedbacks resulting from microbial and abiotic interactions[J]. Nature Climate Change, 2015,5(1):56-63.
[11] Keiluweit M, Nico P S, Kleber M, et al. Are oxygen limitations under recognized regulators of organic carbon turnover in upland soils?[J]. Biogeochemistry, 2016,127(2/3):157-171.
[12] Zhou H, Zhang D, Wang P, et al. Changes in microbial biomass and the metabolic quotient with biochar addition to agricultural soils: A Meta-analysis[J]. Agriculture, Ecosystems & Environment, 2017,239:80-89.
[13] Tian J, Wang J, Dippold M, et al. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil[J]. Science of the Total Environment, 2016, 556: 89-97.
[14] 李胜平,王克林.桂西北喀斯特山地草地土壤养分季节变化规律及其对植被多样性的响应[J].水土保持学报,2016,30(4):199-205.
[15] 武德传,王维洁,施寒丰,等.喀斯特山地植烟土壤养分空间变异及分区研究[J].核农学报,2016(8):1625-1632.
[16] 张红旗,尚二萍,于竹筱.基于地形分异指数的黔桂喀斯特山地土地利用垂直分布特征[J].资源科学,2017,39(10):1964-1974.
[17] 许尔琪,张红旗.喀斯特山地土地利用变化的垂直分布特征[J].中国生态农业学报,2016,24(12):1693-1702.
[18] 余莉,甘淑,袁希平.喀斯特山地流域边界多层次提取的径流树模型[J].山地学报,2016(5):615-622.
[19] 孙嘉曼,卜晓莉,吴永波,等.喀斯特山地石灰土施用生物炭对刺槐幼苗生长和土壤特性的影响[J].生态学杂志,2016,35(12):3250-3257.
[20] Watzinger A, Feichtmair S, Kitzler B, et al. Soil microbial communities responded to biochar application in temperate soils and slowly metabolized 13C-labelled biochar as revealed by 13C PLFA analyses:results from a short-term incubation and pot experiment[J]. European Journal of Soil Science, 2014,65(1):40-51.
[21] Sinsabaugh R L, Shah J J F, Findlay S G, et al. Scaling microbial biomass, metabolism and resource supply[J]. Biogeochemistry, 2015,122(2/3):175-190.
[22] Hu Y, Wang i, Tang Y, et al. Variability in soil microbial community and activity between coastal and riparian wetlands in the Yangtze River estuary-Potential impacts on carbon sequestration[J]. Soil Biology & Biochemistry, 2014,70:221-228.
[23] Xu X, Schimel J P, Thornton P E, et al. Substrate and environmental controls on microbial assimilation of soil organic carbon: A framework for Earth system models[J]. Ecology Letters, 2014,17(5):547-555.
[24] 王启基,王长庭,史惠兰,等.高寒草甸群落植物多样性和初级生产力沿海拔梯度变化的研究[J].植物生态学报,2004,28(2):240-245.
[25] Zhang X, Guan P, Wang Y, et al. Community composition, diversity and metabolic footprints of soil nematodes in differently-aged temperate forests[J]. Soil Biology and Biochemistry, 2015,80:118-126.
[26] Spohn M, Chodak M. Microbial respiration per unit biomass increases with carbon-to-nutrient ratios in forest soils[J]. Soil Biology and Biochemistry, 2015,81:128-133.
[27] Singh B P, Cowie A L. Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil[J]. Scientific Reports, 2014,4:3687. DOI:10.1038/srep03687.
[28] Metcalf J L, Xu Z Z, Weiss S, et al. Microbial community assembly and metabolic function during mammalian corpse decomposition[J]. Science, 2016,351(6269):158-162.
[29] ifˇ/cáková L, Vǔtrovský T, Howe A, et al. Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter[J]. Environmental Microbiology, 2016,18(1):288-301.
[30] Lin X, Tfaily M M, Green S J, et al. Microbial metabolic potential for carbon degradation and nutrient acquisition(N, P)in an ombrotrophic peatland[J]. Applied and Environmental Microbiology, 2014:AEM,00206-14.

相似文献/References:

[1]丁 丽,冀玉良,李 懿.不同林龄油松根际土壤微生物群落多样性及其影响因子[J].水土保持研究,2020,27(04):184.
 Ding Li,JI Yuliang,LI Yi.Soil Microbial Diversity and Its Influencing Factors in Rhizosphere and Non-Rhizosphere in the Stands of Pinus tabuliformis with Different Ages in Minjiang River Valley[J].Research of Soil and Water Conservation,2020,27(03):184.
[2]杨嘉仪,赵广举,穆兴民,等.高寒草地鼠兔干扰下不同地表类型的土壤属性特征[J].水土保持研究,2022,29(03):115.
 YANG Jiayi,ZHAO Guangju,MU Xingmin,et al.Soil Properties of Different Surface Types Disturbed by Plateau Pika in Alpine Meadow[J].Research of Soil and Water Conservation,2022,29(03):115.
[3]李 欢,魏雅丽,闫帮国,等.干热河谷土壤酶活性和车轴草生长对氮磷添加的响应[J].水土保持研究,2022,29(04):89.
 LI Huan,WEI Yali,YAN Bangguo,et al.Response of Soil Enzyme Activities and Trifolium repens L. Growth to Nitrogen and Phosphorus Addition in Dry and Hot Valley[J].Research of Soil and Water Conservation,2022,29(03):89.
[4]雷跻初,刘小伟,邓 军,等.渭北旱塬不同年限撂荒地土壤酶活性及其化学计量变化特征[J].水土保持研究,2024,31(01):44.[doi:10.13869/j.cnki.rswc.2024.01.041]
 Lei Jichu,Liu Xiaowei,Deng Jun,et al.Characteristics of Changes in Soil Enzyme Activities and Stoichiometric Under Different Abandoned Years in the Dry Area of Northern Weihe River Basin[J].Research of Soil and Water Conservation,2024,31(03):44.[doi:10.13869/j.cnki.rswc.2024.01.041]
[5](.神华准格尔能源有限责任公司,内蒙古 鄂尔多斯 0000,.中国矿业大学(北京).露天矿排土场接种AMF对3种植物根系发育与土壤团聚体稳定性的影响[J].水土保持研究,2024,31(03):187.[doi:10.13869/j.cnki.rswc.2024.03.034]
 Quan Min,Du Xinpeng,Bi Yinli.Effects of AMF Inoculation on Root and Aggregate Stability of Three Plant Species in Open Pit Dump[J].Research of Soil and Water Conservation,2024,31(03):187.[doi:10.13869/j.cnki.rswc.2024.03.034]
[6]刘少华,赵 敏,王亚娟,等.黄土丘陵区林分密度对人工刺槐林土壤理化性质及酶活性影响[J].水土保持研究,2024,31(05):123.[doi:10.13869/j.cnki.rswc.2024.05.026]
 Liu Shaohua,Zhao Min,Wang Yajuan,et al.Effects of Stand Density on Soil Physicochemical Properties and Enzyme Activities in Robinia seudoacacia Plantations in the Loess Hilly-Gully Region[J].Research of Soil and Water Conservation,2024,31(03):123.[doi:10.13869/j.cnki.rswc.2024.05.026]

备注/Memo

收稿日期:2019-07-11 修回日期:2019-08-02资助项目:国家自然科学基金面上项目(51678348); 湖北省自然科学基金重点项目(2016CFA085); 国家重点研发计划项目(2017YFC0504902); 宜昌市应用基础研究项目(A18-302-b04)第一作者:金章利(1982—),女,湖南南县人,硕士,副教授,主要研究方向:生态环境修复。E-mail:Zhanglijinn@163.com

更新日期/Last Update: 2020-04-30