[1]林鹏达,佟志军,张继权,等.基于CWT的黑土有机质含量野外高光谱反演模型[J].水土保持研究,2018,25(02):46-52,57.
 LIN Pengda,TONG Zhijun,ZHANG Jiquan,et al.Inversion of Black Soil Organic Matter Content with Field Hyperspectral Reflectance Based on Continuous Wavelet Transformation[J].Research of Soil and Water Conservation,2018,25(02):46-52,57.
点击复制

基于CWT的黑土有机质含量野外高光谱反演模型

参考文献/References:

[1] 栾福明,张小雷,熊黑钢,等.基于不同模型的土壤有机质含量高光谱反演比较分析[J].光谱学与光谱分析,2013,33(1):196-200.
[2] 纪文君,史舟,周清,等.几种不同类型土壤的VIS-NIR光谱特性及有机质响应波段[J].红外与毫米波学报,2012,31(3):277-282.
[3] Shi T, Cui L, Wang J, et al. Comparison of multivariate methods for estimating soil total nitrogen with visible/near-infrared spectroscopy[J]. Plant and Soil,2013,366(1/2):363-375.
[4] Gomez C, Le Bissonnais Y, Annabi M, et al. Laboratory Vis-NIR spectroscopy as an alternative method for estimating the soil aggregate stability indexes of Mediterranean soils[J]. Geoderma,2013,209:86-97.
[5] Nocita M, Kooistra L, Bachmann M, et al. Predictions of soil surface and topsoil organic carbon content through the use of laboratory and field spectroscopy in the Albany Thicket Biome of Eastern Cape Province of South Africa[J]. Geoderma, 2011,167:295-302.
[6] Xu L, Wang Q. Retrieval of soil water content in saline soils from emitted thermal infrared spectra using partial linear squares regression[J]. Remote Sensing, 2015,7(11):14646-14662.
[7] Xu C, Zeng W, Huang J, et al. Prediction of soil moisture content and soil salt concentration from hyperspectral laboratory and field data[J]. Remote Sensing,2016,8(1):42.
[8] Bao N, Wu L, Ye B, et al. Assessing soil organic matter of reclaimed soil from a large surface coal mine using a field spectroradiometer in laboratory[J]. Geoderma, 2017,288:47-55.
[9] Vohland M, Ludwig M, Harbich M, et al. Using variable selection and wavelets to exploit the full potential of visible-near infrared spectra for predicting soil properties[J]. Journal of near Infrared Spectroscopy, 2016,24(3):255-269.
[10] Gmur S, Vogt D, Zabowski D, et al. Hyperspectral analysis of soil nitrogen, carbon, carbonate, and organic matter using regression trees[J]. Sensors, 2012,12(8):10639-10658.
[11] 薛利红,周鼎浩,李颖,等.不同利用方式下土壤有机质和全磷的可见近红外高光谱反演[J].土壤学报,2014,51(5):993-1002.
[12] 武红旗,范燕敏,何晶,等.不同粒径土壤的反射光谱对荒漠土壤有机质含量的响应[J].草地学报,2014,22(2):266-270.
[13] 刘焕军,吴炳方,赵春江,等.光谱分辨率对黑土有机质预测模型的影响[J].光谱学与光谱分析,2012,32(3):739-742.
[14] 栾福明,熊黑钢,王芳,等.基于小波分析的土壤速效K含量高光谱反演[J].干旱区地理,2015(2):320-326.
[15] 陈红艳,赵庚星,李希灿,等.基于小波变换的土壤有机质含量高光谱估测[J].应用生态学报,2011,22(11):2935-2942.
[16] 廖钦洪,顾晓鹤,李存军,等.基于连续小波变换的潮土有机质含量高光谱估算[J].农业工程学报,2013,28(23):132-139.
[17] 于雷,洪永胜,周勇,等.连续小波变换高光谱数据的土壤有机质含量反演模型构建[J].光谱学与光谱分析,2016,36(5):1428-1433.
[18] Wang G, Fang Q, Teng Y, et al. Determination of the factors governing soil erodibility using hyperspectral visible and near-infrared reflectance spectroscopy[J]. International Journal of Applied Earth Observation and Geoinformation, 2016,53:48-63.
[19] 蒋金豹,何汝艳.基于连续小波变换的地下储存CO2泄漏高光谱遥感监测[J].煤炭学报,2015,40(9):2152-2158.
[20] Ullah S, Skidmore A K, Naeem M, et al. An accurate retrieval of leaf water content from mid to thermal infrared spectra using continuous wavelet analysis[J]. Science of the Total Environment, 2012,437:145-152.
[21] Cheng T, Rivard B, Sánchez-Azofeifa A G, et al. Predicting leaf gravimetric water content from foliar reflectance across a range of plant species using continuous wavelet analysis[J]. Journal of Plant Physiology, 2012,169(12):1134-1142.
[22] 刘焕军,赵春江,王纪华,等.黑土典型区土壤有机质遥感反演[J].农业工程学报,2011,27(8):211-215.
[23] 吴嵩.典型黑土区土壤有机质含量反演研究[D].长春:吉林大学,2016.
[24] 武彦清,张柏,宋开山,等.松嫩平原土壤有机质含量高光谱反演研究[J].中国科学院大学学报,2011,28(2):187-194.
[25] Stenberg B, Rossel R A V, Mouazen A M, et al. Chapter five-visible and near infrared spectroscopy in soil science[J]. Advances in Agronomy, 2010,107:163-215.

备注/Memo

收稿日期:2017-5-16;改回日期:2017-6-1。
基金项目:国家自然科学基金(41671347);水利部公益性行业科研专项经费项目(201401015);国家自然科学基金(41571491)
作者简介:林鹏达(1992-),女,四川成都人,硕士研究生,研究方向为黑土地生态安全评价。E-mail:linpd316@nenu.edu.cn
通讯作者:佟志军(1977-),男,辽宁葫芦岛人,博士,副教授,主要从事遥感及生态安全评价与管理研究。E-mail:gis@nenu.edu.cn

更新日期/Last Update: 1900-01-01