[1]徐士博,张美玲,宿茂鑫.未来气候情景下青藏高原草地净初级生产力时空演变特征[J].水土保持研究,2024,31(02):190-201.
 Xu Shibo,Zhang Meiling,Su Maoxin.Characteristics of Temporal and Spatial Evolution of Grassland Net Primary Productivity on the Qinghai-Tibet Plateau Under Future Climate Scenarios[J].Research of Soil and Water Conservation,2024,31(02):190-201.
点击复制

未来气候情景下青藏高原草地净初级生产力时空演变特征

参考文献/References:

[1] 周伟,牟凤云,刚成诚,等.1982—2010年中国草地净初级生产力时空动态及其与气候因子的关系[J].生态学报,2017,37(13):4335-4345.
Zhou W, Mu F Y, Gang C C, et al. Spatio-temporal dynamics of grassland net primary productivity and their relationship with climatic factors from 1982 to 2010 in China[J]. Acta Ecologica Sinica, 2017,37(13):4335-4345.
[2] 陈珊珊,温兆飞,马茂华,等.气候变化背景下定量解析生态工程对植被动态的影响研究方法概述[J].生态学报,2022,42(15):6439-6449.
Chen S S, Wen Z F, Ma M H, et al. Summary of research methods for quantitative analysis of the impact of ecological engineering on vegetation dynamics under the background of climate change[J]. Acta Ecologica Sinica, 2022,42(15):6439-6449.
[3] 吉珍霞,裴婷婷,陈英,等.2001—2020年青藏高原草地NDVI时空变化及驱动因子分析[J].草地学报,2022,30(7):1873-1881.
Ji Z X, Pei T T, Chen Y, et al. Spatial-temporal variation and driving factors of grassland NDVI in the Qinghai-Tibet Plateau from 2001 to 2020[J]. Acta Agrestia Sinica, 2022,30(7):1873-1881.
[4] 刘宥延.草地生态资产与生态系统服务概念与特征[J].草业科学,2022,39(4):795-805.
Liu Y Y. Differentiation and analyses of the concepts and characteristics of ecological assets and ecosystem services of grasslands[J]. Pratacultural Science, 2022,39(4):795-805.
[5] 刘攀,王文颖,周华坤,等.青藏高原人工草地土壤可溶性氮组分与植被生产力动态变化过程[J].植物生态学报,2021,45(5):562-572.
Liu P, Wang W Y, Zhou H K, et al. Dynamics of soil soluble nitrogen and plant productivity in artificial pastures on the Qingzang Plateau[J]. Chinese Journal of Plant Ecology, 2021,45(5):562-572.
[6] 王瑞泾,冯琦胜,金哲人,等.青藏高原退化草地的恢复潜势研究[J].草业学报,2022,31(6):11-22.
Wang R J, Feng Q S, Jin Z R, et al. A study on restoration potential of degraded grassland on the Qinghai-Tibetan Plateau[J]. Acta Prataculturae Sinica, 2022,31(6):11-22.
[7] 陈舒婷,郭兵,杨飞,等.2000—2015年青藏高原植被NPP时空变化格局及其对气候变化的响应[J].自然资源学报,2020,35(10):2511-2527.
Chen S T, Guo B, Yang F, et al. Spatial and temporal patterns of NPP and its response to climate change in the Qinghai-Tibet Plateau from 2000 to 2015[J]. Journal of Natural Resources, 2020,35(10):2511-2527.
[8] 韩海燕.基于Biome-BGC模型的青藏高原草地NPP估算及情景模拟[D].兰州:西北师范大学,2019.
Han H Y. NPP Estimation and Scenario Simulation of Grassland in Qinghai-Tibet Plateau Based on Biome-BGC Model[D]. Lanzhou: Northwest Normal University, 2019.
[9] 翟颖佳,李耀辉,徐影.RCPs情景下中国北方地区干旱气候变化特征[J].高原气象,2016,35(1):94-106.
Zhai Y J, Li Y H, Xu Y. Aridity change characteristics over northern region of China under RCPs scenario[J]. Plateau Meteorology, 2016,35(1):94-106.
[10] 刘丽慧,孙皓,李传华.基于改进土壤冻融水循环的Biome-BGC模型估算青藏高原草地NPP[J].地理研究,2021,40(5):1253-1264.
Liu L H, Sun H, Li C H. Estimation of grassland NPP in the Qinghai-Tibet Plateau based on the improved Biome-BGC model considering soil freeze-thaw water cycle[J]. Geographical Research, 2021,40(5):1253-1264.
[11] 汪柳皓,魏显虎,张宗科,等.青藏高原地区植被指数变化及其与温湿度因子的关系[J].森林与环境学报,2022,42(2):141-148.
Wang L H, Wei X H, Zhang Z K, et al. NDVI variation and its relationship with temperature and precipitation on the Tibetan Plateau[J]. Journal of Forest and Environment, 2022,42(2):141-148.
[12] 罗爽,刘会玉,龚海波.1982—2018年中国植被覆盖变化非线性趋势及其格局分析[J].生态学报,2022,42(20):8331-8342.
Luo S, Liu H Y, Gong H B. Nonlinear trends and spatial pattern analysis of vegetation cover change in China from 1982 to 2018[J]. Acta Ecologica Sinica, 2022,42(20):8331-8342.
[13] Sun H Z, Chen Y B, Xiong J N, et al. Relationships between climate change, phenology, edaphic factors, and net primary productivity across the Tibetan Plateau[J]. International Journal of Applied Earth Observation and Geoinformation, 2022,107:102708.
[14] Luo Z H, Wu W C, Yu X J, et al. Variation of net primary production and its correlation with climate change and anthropogenic activities over the Tibetan Plateau[J]. Remote Sensing, 2018,10(9):1352.
[15] Xiong Q L, Xiao Y, Halmy M W A, et al. Monitoring the impact of climate change and human activities on grassland vegetation dynamics in the northeastern Qinghai-Tibet Plateau of China during 2000—2015[J]. Journal of Arid Land, 2019,11(5):637-651.
[16] 唐中楠,杨国丽,李军,等.未来气候情景下兰江流域径流响应模拟[J].水电能源科学,2022,40(2):32-35.
Tang Z N, Yang G L, Li J, et al. Response of runoff over future period to climate in Lanjiang river basin[J]. Water Resources and Power, 2022,40(2):32-35.
[17] 董瑞,楚彬,花蕊,等.未来气候情景下青藏高原瑞香狼毒(Stellera chamaejasme)的地理分布预测[J].中国草地学报,2022,44(4):10-20.
Dong R, Chu B, Hua R, et al. Geographical distribution prediction of Stellera chamaejasme in the Qinghai-Tibet Plateau under future climate change scenarios[J]. Chinese Journal of Grassland, 2022,44(4):10-20.
[18] 齐庆华.未来气候情景下中国东部极端降水和气温的危险性特征[J].气象与减灾研究,2020,43(4):256-266.
Qi Q H. Risk characteristics of precipitation and temperature extremes over Eastern China under future climatic scenario[J]. Meteorology and Disaster Reduction Research, 2020,43(4):256-266.
[19] 刘洋洋,章钊颖,同琳静,等.中国草地净初级生产力时空格局及其影响因素[J].生态学杂志,2020,39(2):349-363.
Liu Y Y, Zhang Z Y, Tong L J, et al. Spatiotemporal dynamics of China's grassland NPP and its driving factors[J]. Chinese Journal of Ecology, 2020,39(2):349-363.
[20] 欧阳习军,董晓华,魏榕,等.青藏高原植被生长季NDVI时空变化及对气候因子的响应分析[J].水土保持研究,2023,30(2):220-229.
Ouyang X J, Dong X H, Wei R, et al. Analysis of spatiotemporal variation of NDVI in the vegetation growing season and responses to climatic factors in Qinghai-Tibet Plateau[J]. Research of Soil and Water Conservation, 2023,30(2):220-229.
[21] 陈发虎,王亚军,丁林,等.1949年以前青藏高原探险和科学考察活动概况[J].地理学报,2022,77(7):1565-1585.
Chen F H, Wang Y J, Ding L, et al. The expedition and scientific investigation activities on the Tibetan Plateau before 1949[J]. Acta Geographica Sinica, 2022,77(7):1565-1585.
[22] 李月皓,王晓峰,楚冰洋,等.青藏高原生态屏障生态系统时空演变及驱动机制[J].生态学报,2022,42(21):8581-8593.
Li Y H, Wang X F, Chu B Y, et al. Spatiotemporal ecosystem evolution and driving mechanism in the Qinghai-Tibet Plateau ecological barrier area[J]. Acta Ecologica Sinica, 2022,42(21):8581-8593.
[23] Parton W J, Schimel D S, Cole C V, et al. Analysis of factors controlling soil organic matter levels in great Plains grasslands[J]. Soil Science Society of America Journal, 1987,51(5):1173-1179.
[24] 巴桑参木决,温仲明,刘洋洋,等.西藏草地净初级生产力的时空格局演变及其驱动机制分析[J].草地学报,2022,30(4):778-789.
Basang C, Wen Z M, Liu Y Y, et al. Analysis of the spatial-temporal evolution patterns of grassland net primary productivity and its driving mechanisms in the Tibet[J]. Acta Agrestia Sinica, 2022,30(4):778-789.
[25] 刘凤,曾永年.近16年青海高原植被NPP时空格局变化及气候与人为因素的影响[J].生态学报,2019,39(5):1528-1540.
Liu F, Zeng Y N. Spatial-temporal change in vegetation Net Primary Productivity and its response to climate and human activities in Qinghai Plateau in the past 16 years[J]. Acta Ecologica Sinica, 2019,39(5):1528-1540.
[26] 李传华,孙皓,王玉涛,等.基于机器学习估算青藏高原多年冻土区草地净初级生产力[J].生态学杂志,2020,39(5):1734-1744.
Li C H, Sun H, Wang Y T, et al. Estimation of grassland net primary productivity in permafrost of Qinghai-Tibet Plateau based on machine learning[J]. Chinese Journal of Ecology, 2020,39(5):1734-1744.
[27] 张帆.青藏高原草地净初级生产力在过去34年的变化及局部退化特征分析[D].兰州:兰州大学,2021.
Zhang F. Productivity in the Qinghai-Tibet Plateau During the Past 34 Years and Analysis of Its Local Degradation Characteristics[D]. Lanzhou: Lanzhou University, 2021.
[28] 何楷迪,孙建,陈秋计.气候要素和土壤质地对青藏高原草地净初级生产力和降水利用率的影响[J].草业科学,2019,36(4):1053-1065.
He K D, Sun J, Chen Q J. Response of climate and soil texture to net primary productivity and precipitation-use efficiency in the Tibetan Plateau[J]. Pratacultural Science, 2019,36(4):1053-1065.
[29] 刘晓东,程志刚,张冉.青藏高原未来30~50年A1B情景下气候变化预估[J].高原气象,2009,28(3):475-484.
Liu X D, Cheng Z G, Zhang R. The A1B scenario projection for climate change over the Tibetan Plateau in the next 30~50 years[J]. Plateau Meteorology, 2009,28(3):475-484.
[30] 边多,杨秀海,普布次仁,等.西藏NPP时空格局与气候因子的关系[J].中国沙漠,2015,35(3):830-836.
Bian D, Yang X H, Pubuciren, et al. Spatial and temporal pattern of NPP and its relationship with climate factors in Tibet, China[J]. Journal of Desert Research, 2015,35(3):830-836.
[31] 周夏飞,於方,曹国志,等.2001—2015年青藏高原草地碳源/汇时空变化及其与气候因子的关系[J].水土保持研究,2019,26(1):76-81.
Zhou X F, Yu F, Cao G Z, et al. Spatiotemporal features of carbon source-sink and its relationship with climate factors in Qinghai-Tibet Plateau grassland ecosystem during 2001—2015[J]. Research of Soil and Water Conservation, 2019,26(1):76-81.

备注/Memo

收稿日期:2022-09-01 修回日期:2022-09-23
资助项目:国家自然科学基金(32260353); 甘肃省重点研发计划(21YF5WA096); 科技部高端外国专家引进计划(G2022042009L); 甘肃农业大学青年导师扶持基金(GUO-QDFC-2019-03); 横向项目(GSAU-JSFW-2022-20); 甘肃省自然科学基金(1606RJZA077,1308RJZA262)
第一作者:徐士博(1999—),男,河南周口人,硕士研究生,研究方向为生态统计。E-mail:885161614@qq.com
通信作者:张美玲(1978—),女,甘肃酒泉人,博士,副教授,主要从事生态统计研究。E-mail:zhangml@gsau.edu.cn

更新日期/Last Update: 2024-04-20